Домой / Малый бизнес / Ускоренные и маркировочные методы химического и спектрального ahaлизa основных и сварочных материалов в химнефтеаппаратостроении. Оптический эмиссионный спектральный анализ (оэса) Метод трех эталонов

Ускоренные и маркировочные методы химического и спектрального ahaлизa основных и сварочных материалов в химнефтеаппаратостроении. Оптический эмиссионный спектральный анализ (оэса) Метод трех эталонов

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ

МЕТОД ФОТОЭЛЕКТРИЧЕСКОГО СПЕКТРАЛЬНОГО АНАЛИЗА

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск

Предисловие

1 РАЗРАБОТАН Российской Федерацией, Межгосударственным техническим комитетом МТК 145 «Методы контроля металлопродукции»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11-97 от 25 апреля 1997 г.)

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика

Азгосстандарт

Республика Армения

Армгосстандарт

Республика Белоруссия

Госстандарт Белоруссии

Республика Казахстан

Госстандарт Республики Казахстан

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикгосстандарт

Туркменистан

Главная государственная инспекция Туркменистана

Госстандарт Украины

3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 сентября 1997 г. № 332 межгосударственный стандарт ГОСТ 18895-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ

Метод фотоэлектрического спектрального анализа

Steel. Method of photoelectric spectral analysis

Дата введения 1998-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает фотоэлектрический спектральный метод определения в стали массовой доли элементов, %:

углерода от 0,010 до 2,0;

серы » 0,002 » 0,20;

фосфора » 0,002 » 0,20;

кремния » 0,010 » 2,5;

марганца » 0,050 » 5,0;

хрома » 0,010 » 10,0;

никеля » 0,010 » 10,0;

кобальта » 0,010 » 5,0;

меди » 0,010 » 2,0;

алюминия » 0,005 » 2,0;

мышьяка » 0,005 » 0,20;

молибдена » 0,010 » 5,0;

вольфрама » 0,020 » 5,0;

ванадия » 0,005 » 5,0;

титана » 0,005 » 2,0;

ниобия » 0,010 » 2,0;

бора » 0,001 » 0,10;

циркония » 0,005 » 0,50.

Метод основан на возбуждении атомов элементов стали электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов, пропорциональных интенсивности или логарифму интенсивности спектральных линий, и последующем определении массовых долей элементов с помощью градуировочных характеристик.

2 НОРМАТИВНЫЕ ССЫЛКИ

Электрокорундовые абразивные круги с керамической связкой, зернистостью № 50, твердостью СТ-2, размером 300×40×70 мм по ГОСТ 2424 .

Шкурка шлифовальная бумажная типа 2 на бумаге марки БШ-200 (П7) из нормального электрокорунда зернистостью 40 - 60 по ГОСТ 6456 .

Аргон газообразный высшего сорта по ГОСТ 10157 .

Электропечь для сушки и чистки аргона типа СУОЛ-0.4.4/12-Н2-У4.2.

В случае применения вакуумных фотоэлектрических установок используют постоянные электроды-прутки серебряные, медные и вольфрамовые диаметром 5 - 6 мм или вольфрамовую проволоку диаметром 1 - 2 мм длиною не менее 50 мм.

Для воздушных фотоэлектрических установок используют медные прутки марок M00, M1, M2 по ГОСТ 859 и угольные стержни марки С3 диаметром 6 мм и длиной не менее 50 мм.

Для определения массовой доли элементов в прокатной стали применяют вакуумные и воздушные фотоэлектрические установки. Если образец не перекрывает полностью отверстие в штативе вакуумной установки, применяют контактную камеру (см. рисунок 1) или другое приспособление, ограничивающее отверстие в столе штатива.

1 - прокладки; 2 - пластина; 3 - пружина; 4 - контакт

Рисунок 1 - Контактная камера для вакуумного спектрометра

Допускается применение другой аппаратуры, оборудования и материалов, обеспечивающих точность анализа, предусмотренную настоящим стандартом.

5 ПОДГОТОВКА К АНАЛИЗУ

5.1 Подготовку установки к выполнению измерений проводят в соответствии с инструкцией по обслуживанию и эксплуатации установки.

5.2 Градуировку каждой фотоэлектрической установки осуществляют экспериментально при внедрении методики выполнения измерений с помощью стандартных образцов (СО) состава, аттестованных в соответствии с ГОСТ 8.315 .

Допускается применение однородных проб, проанализированных стандартизованными или аттестованными методиками химического анализа.

5.3 При первичной градуировке выполняют не менее пяти серий измерений в разные дни работы фотоэлектрической установки. В серии для каждого СО проводят по две пары параллельных (выполняемых одно за другим на одной поверхности) измерений. Порядок пар параллельных измерений для всех СО в серии рандомезируют. Вычисляют среднее арифметическое значение аналитических сигналов по серии и среднее арифметическое значение аналитических сигналов для пяти серий измерений для каждого СО.

Расчетным или графическим способом устанавливают градуировочные характеристики, которые выражают в виде формулы, графика или таблицы. Градуировочные характеристики используют для определения массовых долей контролируемых элементов непосредственно или с учетом влияния химического состава и физико-химических свойств объекта.

Для установок, сопряженных с ЭВМ, процедура градуировки определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.

5.4 При повторной градуировке допускается сокращение числа серий до двух.

5.5 В случае оперативной градуировки (получения градуировочных характеристик с каждой партией анализируемых проб) выполняют не менее двух параллельных измерений для каждого СО.

6 ПРОВЕДЕНИЕ АНАЛИЗА

6.1 Условия проведения анализа на фотоэлектрических установках приведены в приложении А (таблицы А.1, А.2).

6.2 Длины волн спектральных линий и диапазон значений массовых долей элементов приведены в приложении А (таблица А.3).

6.3 Выполняют два параллельных измерения значений аналитического сигнала для каждого контролируемого элемента анализируемой пробы в условиях, принятых при градуировке. Допускается выполнять три параллельных измерения.

7 ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1 Если расхождение значений аналитического сигнала, выраженное в единицах массовой доли не более d cx (таблица 1) для двух параллельных измерений и 1,2d cx для трех параллельных измерений, вычисляют среднее арифметическое значение.

Допускается выражать значение аналитического сигнала и расхождений параллельных измерений в единицах шкалы отсчетно-регистрирующего прибора фотоэлектрической установки. В этом случае d cx выражают в единицах шкалы отсчетно-регистрирующего прибора с помощью установленных градуировочных характеристик.

В случае превышения расхождений параллельных измерений допускаемых значений d cx (1,2d cx ) анализ повторяют.

7.2 За окончательный результат анализа принимают среднее арифметическое двух или трех параллельных измерений, соответствующих требованиям 7.1.

7.3 Контроль стабильности результатов анализа

7.3.1 Контроль стабильности градуировочных характеристик для верхнего и нижнего пределов диапазона измерений осуществляют не реже одного раза в смену с помощью СО или однородных проб. Допускается проводить контроль только для верхнего предела или середины диапазона измерений.

Для СО (пробы) выполняют два параллельных измерения аналитического сигнала. Значения аналитического сигнала N выражают в единицах массовой доли или шкалы отсчетно-регистрирующего прибора фотоэлектрической установки.

7.3.2 Если расхождение значений аналитического сигнала для параллельных измерений не превышает d cx (таблица 1), вычисляют среднее арифметическое значение и разность DN = N 0 - , где N 0 - значение аналитического сигнала для СО (пробы), полученное способом, указанным в 5.3.

Таблица 1 - Нормы и нормативы контроля точности

Массовая доля элементов, %

Погрешность результата анализа D, %

Допускаемое расхождение, %

между результатами двух параллельных измерений d cx

между результатами анализа, выполненными в разных условиях d в

между результатами спектрального и химического анализов d п

между результатами воспроизведения характеристик СО, полученных при установлении градуировочных характеристик, и их значениями при контроле стабильности градуировочных характеристик δ ст

Марганец

Алюминий

Молибден

Вольфрам

Цирконий

7.3.3 Если DN превышает допускаемое значение δ ст (таблица 1), измерения повторяют в соответствии с 7.3.1. Если при повторных измерениях DN превышает допускаемое значение, осуществляют восстановление градуировочной характеристики. Порядок восстановления градуировочной характеристики для каждой установки определяется ее аналитическими и конструктивными возможностями.

7.3.4 Внеочередной контроль стабильности осуществляют после ремонта или профилактики фотоэлектрической установки.

7.3.5 При оперативной градуировке контроль стабильности не проводят.

7.3.6 Для установок, сопряженных с ЭВМ, процедура контроля стабильности определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.

7.4 Контроль воспроизводимости результатов анализа

7.4.1 Контроль воспроизводимости результатов спектрального анализа выполняют определением массовых долей элементов в проанализированных ранее пробах.

7.4.2 Число повторных определений должно быть не менее 0,3 % общего числа определений за контролируемый период.

7.4.3 Воспроизводимость измерений считают удовлетворительной, если число расхождений первичного и повторного анализа, превышающих допускаемое значение d в (таблица 1) составляет не более 5 % числа проконтролированных результатов.

7.5 Контроль правильности результатов анализа

7.5.1 Контроль правильности проводят выборочным сравнением результатов спектрального анализа проб с результатами химического анализа, выполняемого стандартизованными или аттестованными методиками.

7.5.2 Число результатов при контроле правильности должно быть не менее 0,3 % общего числа определений за контролируемый период.

7.5.3 Правильность измерений считают удовлетворительной, если число расхождений результатов спектрального и химического анализа, превышающих допускаемое значение d п (таблица 1), составляет не более 5 % числа проконтролированных результатов.

7.5.4 Допускается выполнять контроль правильности методом спектрального анализа на основе воспроизведения значений массовых долей элементов в СО предприятия.

7.6 При выполнении требований настоящего стандарта погрешность результата анализа (при доверительной вероятности 0,95) не должна превышать предельного значения D (таблица 1).

ПРИЛОЖЕНИЕ А

Условия проведения анализа на фотоэлектрических установках

Таблица А.1

Контролируемый параметр

Воздушные фотоэлектрические установки

Спектрометры ФЭС-1 и ФСПА-У, генераторы ГЭУ-1 и ИВС-28. Дуга переменного тока

ДФС-1ОМ. Генератор ГЭУ-1

МФС-4 и МФС-6. Генератор АРКУС

ДФС-36. Генератор УГЭ-4

Напряжение, В

Режимы генератора:

дуга постоянного тока от 1,5 до 20 А;

дуга переменного тока различной скважности и полярности от 1,5 до 20 А;

низковольтная искра 250 - 300 В;

высоковольтная искра от 7500 до 15000 В;

импульсный разряд большой мощности

Частота, Гц

Сила тока, А

Аналитический промежуток, мм

Ширина выходных щелей, мм

0,04; 0,075; 0,10

Время обжига, с

Время экспозиции, с

Электроды

Используют медные прутки диаметром 6 мм и угольные стержни марки С-3. Стержни затачивают на полусферу с радиусом кривизны 3 - 4 мм либо на усеченный конус под углом 45 - 90° с диаметром площадки 1,5 - 2,0 мм

Таблица А.2

Контролируемый параметр

Вакуумные фотоэлектрические установки

ДФС-41. Генератор ИВС-2. Высоковольтная искра

Поливак Е-600

Генератор Полисурс

Генератор Минисурс П. Низковольтная дуга

Генератор FS 139. Низковольтная дуга

Высоковольтная искра

Низковольтная искра

Напряжение, В

Емкость, мкФ

Индуктивность, мкГн

Частота, Гц

Сопротивление, Ом

Ширина выходных щелей, мм

0,04; 0,075; 0,10

0,038; 0,05; 0,075

Время продувки камеры аргоном, с

Аналитический промежуток, мм

Продувка камеры аргоном, л/мин

Время обжига, с

Время экспозиции, с

Электроды

Используют прутки серебряные, медные и вольфрамовые диаметром 5 - 6 мм, заточенные на конус 90°, или вольфрамовую проволоку диаметром 1 - 2 мм, заточенную на плоскость

Примечание - Параметры выбираются в пределах указанных значений

Таблица A.3

Определяемый элемент

Длина волны определяемого элемента, нм

Мешающий элемент

Диапазон значений массовой доли элементов, %

Железо, вольфрам

Железо, вольфрам

Железо, ванадий

Марганец

Вольфрам

Вольфрам

Вольфрам

Вольфрам

Кобальт, вольфрам

Вольфрам

Вольфрам

Марганец, титан

Ниобий, молибден

Титан, молибден

Ниобий, марганец

Вольфрам

Алюминий

Молибден, цирконий

Углерод, кремний

Молибден

Алюминий

Вольфрам

Вольфрам

Алюминий

Вольфрам

Железо, титан

Вольфрам, ниобий

Титан, железо

Вольфрам

Ванадий, вольфрам

Вольфрам, хром

Вольфрам, железо

Вольфрам, железо

Цирконий

Молибден

Ванадий, молибден, титан

Ниобий, молибден

Церий, молибден, ванадий

Хром, никель

Молибден, ванадий

Церий, мышьяк

Ванадий, цирконий

Линия сравнения

Вольфрам

Кобальт, ванадий

Вольфрам

Линия сравнения

Примечание - Линии подбираются конкретно для аналитической методики в зависимости от их интенсивности, типа фотоэлектрической установки, наложения других линий, возможности размещения выходных щелей на каретках прибора

Ключевые слова: сталь, анализ, фотоэлектрический спектральный метод, проба, аппаратура, материалы, результат, погрешность результатов

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ

МЕТОД ФОТОЭЛЕКТРИЧЕСКОГО СПЕКТРАЛЬНОГО АНАЛИЗА

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

Предисловие

1 РАЗРАБОТАН Российской Федерацией, Межгосударственным техническим комитетом МТК 145 «Методы контроля металлопродукции»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N° 11-97 от 25 апреля 1997 г.)

3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 сентября 1997 г. № 332 межгосударственный стандарт ГОСТ 18895-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

4 ВЗАМЕН ГОСТ 18895-81

© ИПК Издательство стандартов, 1998

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

1 Область применения........................................................1

3 Отбор и подготовка проб........................................

4 Аппаратура и материалы.........................................

5 Подготовка к анализу...........................................

6 Проведение анализа............................................

7 Обработка результатов..........................................

Приложение А Условия проведения анализа на фотоэлектрических установках............8

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Метод фотоэлектрического спектрального анализа

Steel. Method of photoelectric spectral analysis

Дата введения 1998-01-01

I ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает фотоэлектрический спектральный метод определения в стали массовой доли элементов, %:

углерода

марганца

кобальта

алюминия

молибдена

вольфрама

циркония

Метод основан на возбуждении атомов элементов стали электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов, пропорциональных интенсивности или логарифму интенсивности спектральных линий, и последующем определении массовых долей элементов с помощью градуировочных характеристик.

ГОСТ 8.315-97 ГСИ. Стандартные образцы состава и свойств веществ и материалов. Основные положения

ГОСТ 859-78 Медь. Марки

ГОСТ 2424-83 Круги шлифовальные. Технические условия ГОСТ 6456-82 Шкурка шлифовальная бумажная. Технические условия ГОСТ 7565-81 (ИСО 377-2-89) Чугун, сталь и сплавы. Метод отбора проб для химического состава

ГОСТ 10157-79 Аргон газообразный и жидкий. Технические условия ГОСТ 21963-82 Круги отрезные. Технические условия

Издание официальное

3 ОТБОР И ПОДГОТОВКА ПРОБ

Отбор и подготовка проб - по ГОСТ 7565 с дополнением. Поверхность пробы, предназначенную для обыскривания, затачивают на плоскость. На поверхности не допускаются раковины, шлаковые включения, цвета побежалости и другие дефекты.

4 АППАРАТУРА И МАТЕРИАЛЫ

Фотоэлектрические вакуумные и воздушные установки индивидуальной градуировки.

Отрезной станок типов 8230 и 2К337.

Шлифовальный станок модели ЗЕ881.

Точильно-шлифовальный станок (обдирочно-наждачный) типа ТЩ-500.

Универсальный станок для заточки электродов модели КП-35.

Токарно-винторезный станок модели 1604.

Отрезные диски 400 х 4*х 32 мм по ГОСТ 21963.

Электрокорундовые абразивные крути с керамической связкой, зернистостью № 50, твердостью СТ-2, размером 300 х 40 х 70 мм по ГОСТ 2424.

Шкурка шлифовальная бумажная типа 2 на бумаге марки БШ-200 (П7) из нормального элекгрокорунда зернистостью 40-60 по ГОСТ 6456.

Аргон газообразный высшего сорта по ГОСТ 10157.

Электропечь для сушки и чистки аргона типа СУОЛ-0.4.4/12-Н2-У4.2.

В случае применения вакуумных фотоэлектрических установок используют постоянные элекгроды-прутки серебряные, медные и вольфрамовые диаметром 5-6 мм или вольфрамовую проволоку диаметром 1-2 мм длиною не менее 50 мм.

Для воздушных фотоэлектрических установок используют медные прутки марок М00, Ml, М2 по ГОСТ 859 и угольные стержни марки СЗ диаметром 6 мм и длиной не менее 50 мм.

Для определения массовой доли элементов в прокатной стали применяют вакуумные и воздушные фотоэлектрические установки. Если образец не перекрывает полностью отверстие в штативе вакуумной установки, применяют контактную камеру (см. рисунок 1) или другое приспособление, ограничивающее отверстие в столе штатива.

Рисунок 1 - Контактная камера для вакуумного спектрометра

Допускается применение другой аппаратуры, оборудования и материалов, обеспечивающих точность анализа, предусмотренную настоящим стандартом.

5 ПОДГОТОВКА К АНАЛИЗУ

5.1 Подготовку установки к выполнению измерений проводят в соответствии с инструкцией по обслуживанию и эксплуатации установки.

5.2 Градуировку каждой фотоэлектрической установки осуществляют экспериментально при внедрении методики выполнения измерений с помощью стандартных образцов (СО) состава, аттестованных в соответствии с ГОСТ 8.315.

Допускается применение однородных проб, проанализированных стандартизованными или аттестованными методиками химического анализа,

5.3 При первичной градуировке выполняют не менее пяти серий измерений в разные дни работы фотоэлектрической установки. В серии для каждого СО проводят по две пары параллельных (выполняемых одно за другим на одной поверхности) измерений. Порядок пар параллельных измерений для всех СО в серии рандомезируют. Вычисляют среднее арифметическое значение аналитических сигналов по серии и среднее арифметическое значение аналитических сигналов для пяти серий измерений для каждого СО.

Расчетным или графическим способом устанавливают градуировочные характеристики, которые выражают в виде формулы, графика или таблицы. Градуировочные характеристики используют для определения массовых долей контролируемых элементов непосредственно или с учетом влияния химического* состава и физико-химических свойств объекта.

Для установок, сопряженных с ЭВМ, процедура градуировки определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.

5.4 При повторной градуировке допускается сокращение числа серий до двух.

5.5 В случае оперативной градуировки (получения градуировочных характеристик с каждой партией анализируемых проб) выполняют не менее двух параллельных измерений для каждого СО.

6 ПРОВЕДЕНИЕ АНАЛИЗА

6.1 Условия проведения анализа на фотоэлектрических установках приведены в приложении А (таблицы АЛ, А.2).

6.2 Длины волн спектральных линий и диапазон значений массовых долей элементов приведены в приложении А (таблица А.З).

6.3 Выполняют два параллельных измерения значений аналитического сигнала для каждого контролируемого элемента анализируемой пробы в условиях, принятых при градуировке. Допускается выполнять три параллельных измерения.

7 ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1 Если расхождение значений аналитического сигнала, выраженное в единицах массовой доли не более d cx (таблица 1) для двух параллельных измерений и 1,2 d cx для трех параллельных измерений, вычисляют среднее арифметическое значение.

Допускается выражать значение аналитического сигнала и расхождений параллельных измерений в единицах шкалы отсчетно-регистрирующего прибора фотоэлектрической установки. В этом случае d cx выражают в единицах шкалы отсчетно-регистрирующего прибора с помощью установленных градуировочных характеристик.

В случае превышения расхождений параллельных измерений допускаемых значений d cx (1,2 d cx) анализ повторяют.

7.2 За окончательный результат анализа принимают среднее арифметическое двух или трех параллельных измерений, соответствующих требованиям 7.1.

7.3 Контроль стабильности результатов анализа

7.3.1 Контроль стабильности градуировочных характеристик для верхнего и нижнего пределов диапазона измерений осуществляют не реже одного раза в смену с помощью СО или однородных проб. Допускается проводить контроль только для верхнего предела или середины диапазона измерений.

Для СО (пробы) выполняют два параллельных измерения аналитического сигнала. Значения аналитического сигнала N выражают в единицах массовой доли или шкалы отсчетно-регистрирующего прибора фотоэлектрической установки.

7.3.2 Если расхождение значений аналитического сигнала для параллельных измерений не повышает d cx (таблица 1), вычисляют среднее арифметическое значение N и разность AN = N$ - N> где N 0 - значение аналитического сигнала для СО (пробы), полученное способом, указанным в 5.3.

Таблица 1 - Нормы и нормативы контроля точности

Массовая доля элементов, %

Погрешность результата анализа Д > %

Допускаемое расхождение, %

результатами

параллельных измерений dcx

результатами анализа, выполненными в разных условиях

результатами

спектрального

химического анализов d n

результатами воспроизведения характеристик СО, полученных при установлении градуировочных характеристик, и их значениями при контроле стабильности градуировочных характеристик 5 СТ

Марганец

Массовая доля элементов, %

Погрешность результата анализа Д, %

Допускаемое расхождение, %

результатами

параллельных измерений dcx

результатами анализа, выполненными в разных условиях db

результатами

спектрального

химического анализов dn

результатами во спроизведения характеристик СО, полученных при установлении градуировочных характеристик, и их значениями при контроле стабильности градуировочных характеристик 5 СТ

Алюминий

Молибден

Окончание таблицы 1

Массовая доля элементов, %

Погрешность результата анализа А, %

Допускаемое расхождение, %

результатами

параллельных измерений dcx

результатами анализа, выполненными в разных условиях 4»

результатами

спектрального

химического анализов d n

результатами воспроизведения характеристик СО, полученных при установлении градуировочных характеристик, и их значениями при контроле стабильности градуир ов очных характеристик бет

Вольфрам

Цирконий

7.3.3 Если AN превышает допускаемое значение 5^ (таблица 1), измерения повторяют в соответствии с 7.3.1. Если при повторных измерениях AN превышает допускаемое значение, осуществляют восстановление градуировочной характеристики. Порядок восстановления градуировочной характеристики для каждой установки^)пределяется ее аналитическими и конструктивными возможностями.

7.3.4 Внеочередной контроль стабильности осуществляют после ремонта или профилактики фотоэлектрической установки.

7.3.5 При оперативной градуировке контроль стабильности не проводят.

7.3.6 Для установок, сопряженных с ЭВМ, процедура контроля стабильности определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.

7.4 Контроль воспроизводимости результатов анализа

7.4.1 Контроль воспроизводимости результатов спектрального анализа выполняют определением массовых долей элементов в проанализированных ранее пробах.

7.4.2 Число повторных определений должно быть не менее 0,3 % общего числа определений за контролируемый период.

7.4.3 Воспроизводимость измерений считают удовлетворительной, если число расхождений первичного и повторного анализа, превышающих допускаемое значение (таблица 1) составляет не более 5 % числа проконтролированных результатов.

7.5 Контроль правильности результатов анализа

7.5.1 Контроль правильности проводят выборочным сравнением результатов спектрального анализа проб с результатами химического анализа, выполняемого стандартизованными или аттестованными методиками.

7.5.2 Число результатов при контроле правильности должно быть не менее 0,3 % общего числа определений за контролируемый период.

7.5.3 Правильность измерений считают удовлетворительной, если число расхождений результатов спектрального и химического анализа, превышающих допускаемое значение (таблица 1), составляет не более 5 % числа проконтролированных результатов.

7.5.4 Допускается выполнять контроль правильности методом спектрального анализа на основе воспроизведения значений массовых долей элементов в СО предприятия.

7.6 При выполнении требований настоящего стандарта погрешность результата анализа (при доверительной вероятности 0,95) не должна превышать предельного значения А (таблица 1).

Условия проведения анализа на фотоэлектрических установках

Таблица А.1

Воздушные фотоэлектрические установки

Спектрометры ФЭС-1 и ФСПА-У, генераторы ГЭУ-I и ИВС-28. Дуга переменного тока

Контролируемый

параметр

ДФС-ЮМ. Генератор ГЭУ-1

МФС-4 и МФС-6. Генератор АРКУС

ДФС-36. Генератор УГЭ-4

Напряжение, В

Режимы генератора: дуга постоянного тока от 1,5 до 20 А;

дуга переменного тока различной скважности и полярности от 1,5 до 20 А;

низковольтная искра 250- 300 В;

высоковольтная искра от 7500 до 15000 В;

импульсный разряд большой мощности

Частота, Гц

Сила тока, А

Аналитический промежуток,

Ширина выход-

ных щелей, мм

0,04; 0,075; 0,10

Время обжига, с

Время экспози-

Электроды

Используют медные прутки диаметром 6 мм и угольные стержни марки С-3. Стержни затачивают на полусферу с радиусом кривизны 3-4 мм либо на усеченный конус под углом 45-90 ° с диаметром площадки 1,5-2,0 мм

Таблица А.2

Контролируемый параметр

Генератор

Высоковольтная

Поливак Е-600

Генератор Полисурс

Генератор FS 139.

Низковольтная

Высоковольтная

Низковольтная

Напряжение, В

Емкость, мкФ

Индуктивность, мкГн

Частота, Гц

Сопротивление, Ом

Ширина выходных щелей, мм

Вакуумные фотоэлектрические установки

Контролируемый параметр

Поливак Е-600

Генератор

Высоковольтная

Генератор Полисурс

Генератор Минисурс П. Низковольтная дуга

Генератор FS

Низковольтная

Высоковольтная

Низковольтная

Время продувки камеры

аргоном, с

Аналитический промеж-

Продувка камеры аргоном,

Время обжига, с

Время экспозиции, с

Электроды

Используют прутки серебряные, медные и вольфрамовые диаметром 5-6 мм,

заточенные на конус 90 % или вольфрамовую проволоку диаметром 1-2 мм, заточенную на плоскость

Примечание - Параметры выбираются в пределах указанных значений

Таблица А.З

Определяемый элемент

Мешающий элемент

Железо, вольфрам

Железо, вольфрам

Железо, ванадий

Марганец

Продолжение таблицы Л.З

Определяемый элемент

Длина волны определяемого элемента, нм

Мешающий элемент

Диапазон значений массовой доли элементов, %

Вольфрам

Вольфрам

Вольфрам

Вольфрам

Кобальт, вольфрам

Вольфрам

Вольфрам

Марганец, титан

Ниобий, молибден

Титан, молибден

Ниобий, марганец

Вольфрам

Алюминий

Молибден, цирконий

Углерод, кремний

Молибден

Алюминий

Вольфрам

Вольфрам

Алюминий

Определяемый элемент

Длина волны определяемого элемента, нм

Мешающий элемент

Диапазон значений массовой доли элементов, %

Вольфрам

Железо, титан

Вольфрам, ниобий

Титан, железо

Вольфрам

Ванадий, вольфрам

Вольфрам, хром

Вольфрам, железо

Вольфрам, железо

Цирконий

Молибден

Ванадий, молибден, титан

Ниобий, молибден

Церий, молибден,

Хром, никель

Молибден, ванадий

Церий, мышьяк

Ванадий, цирконий

Линия сравнения

Вольфрам

Кобальт, ванадий

Вольфрам

Окончание таблицы А 3

Примечание - Линии подбираются конкретно для аналитической методики в зависимости от их I интенсивности, типа фотоэлектрической установки, наложения других линий, возможности размещения; выходных щелей на каретках прибора_

УДК 669.14.001.4:006.354 МКС 77.080.40 В39 ОКСТУ 0809

Ключевые слова: сталь, анализ, фотоэлектрический спектральный метод, проба, аппаратура, материалы, результат, погрешность результатов

Редактор Л И Нахимова Технический редактор В И Прусакова Корректор РА Ментова Компьютерная верстка А Н Золотаревой

Изд лиц № 021007 от 10 08 95 Сдано в набор 03 12 97 Подписано в печать 27 02 98 Услпечл 1,86 Уч-издл 1,40

Тираж 335 экз С 1226 Зак 899

ИПК Издательство стандартов 107076, Москва, Колодезный пер, 14 Набрано в Издательстве на ПЭВМ

Филиал ИПК Издательство стандартов - тип “Московский печатник” Москва, Лялин пер, 6

Оптический эмиссионный спектральный анализ (ОЭСА)

Оптический эмиссионный спектральный анализ (ОЭСА) - один из наиболее распространенных методов анализа элементного состава материалов. Важнейшие достоинства ОЭСА - его быстрота (экспрессность) наряду с высокой точностью и низкими пределами обнаружения, низкая себестоимость, простота пробоподготовки.


Основные области применения - анализ состава металлов и сплавов в металлургии и машиностроении, исследование геологических образцов и минерального сырья в горнодобывающей промышленности, анализ вод и почв в экологии, анализ моторных масел и других технических жидкостей на примеси металлов с целью диагностики состояния машин и механизмов…

Принцип действия оптического эмиссионного спектрометра достаточно прост. Он основан на том, что атомы каждого элемента могут испускать свет определенных длин волн - спектральные линии, причем эти длины волн разные для разных элементов. Для того чтобы атомы начали испускать свет, их необходимо возбудить - нагреванием, электрическим разрядом, лазером или каким-либо иным способом. Чем больше атомов данного элемента присутствует в анализируемом образце (пробе), тем ярче будет излучение соответствующей длины волны.

На рисунке приведена функциональная схема оптического эмиссионного спектрометра. Он состоит из следующих основных частей:

  • штатив, в который устанавливается анализируемая проба с источником возбуждения спектра - устройством, которое заставляет атомы пробы излучать свет;
  • полихроматор, раскладывающий излучение пробы в спектр и позволяющий разделить излучение различных атомов, т.е. выделить спектральные линии анализируемых элементов;
  • приемники излучения (например, фотоэлектронные умножители - ФЭУ) с системой регистрации, которые преобразуют свет в электрический сигнал, регистрируют его и передают в компьютер;
  • компьютер, вычисляющий концентрации анализируемых элементов и управляющий всеми узлами прибора.

Интенсивность спектральной линии анализируемого элемента, помимо концентрации анализируемого элемента, зависит от большого числа различных факторов. По этой причине рассчитать теоретически связь между интенсивностью линии и концентрацией соответствующего элемента невозможно. Вот почему для проведения анализа необходимы стандартные образцы, близкие по составу к анализируемой пробе. Предварительно эти стандартные образцы экспонируются (прожигаются) на приборе.


По результатам этих прожигов для каждого анализируемого элемента строится градуировочный график, т.е. зависимость интенсивности спектральной линии элемента от его концентрации. Впоследствии, при проведении анализа проб, по этим градуировочным графикам и производится пересчет измеренных интенсивностей в концентрации.

Стандартные образцы

Стандартные образцы - это образцы с известным элементным составом. Они необходимы для градуировки оптического эмиссионного спектрометра.

Стандартные образцы, как правило, выпускаются комплектами; к каждому комплекту обязательно должен быть приложен паспорт, в котором приведены концентрации всех элементов и погрешности, с которыми эти концентрации определены.

Требования, предъявляемые к используемым стандартным образцам:

  1. Соответствие анализируемым пробам по химическому составу.
  2. Содержание анализируемых элементов в стандартах должно охватывать весь интервал возможных массовых долей элемента в пробах.
  3. Равномерное распределение всех элементов в комплекте стандартных образцов.
  4. Максимальное соответствие анализируемым пробам по структуре и физико-химическим свойствам.
  5. Стабильность состава и свойств на длительный период времени.
  6. Минимальное количество стандартов с равномерной разбивкой концентраций для градуировки - 4-6 образцов.

Подготовка проб для анализа

Трудно переоценить значение рационального отбора пробы и правильной ее подготовки для получения надежных и достоверных результатов анализа. По нашему опыту, по меньшей мере половина ошибочных результатов анализа связана с ошибками при пробоотборе и подготовке проб.


Следует иметь виду, что реально анализу подвергается несколько миллиграммов пробы с ее поверхности. Поэтому для получения правильных результатов проба должна быть однородна по составу и структуре, при этом состав пробы должен быть идентичным составу анализируемого металла.

При анализе металла в литейном или плавильном производстве для отливки проб рекомендуется использовать специальные кокили. При этом форма пробы, вообще говоря, может быть произвольной. Необходимо лишь, чтобы анализируемый образец имел достаточную поверхность и мог быть зажат в штативе.

Для отбора пробы при входном контроле материалов для отбора проб могут использоваться отрезные машинки, ножницы и т.п.


Для анализа мелких образцов, например прутков или проволоки, могут быть использованы специальные адаптеры. Весьма важную роль играет также подготовка анализируемой поверхности.

При анализе алюминиевых и медных сплавов поверхность пробы рекомендуется подготавливать на токарных или фрезерных станках; в некоторых случаях для подготовки поверхности можно использовать напильник. При этом следует избегать перегрева поверхности пробы и режущего инструмента, т.к. перегрев может менять состав и структуру материала в слое приблизительно 0,1-0,3мм.


Для сталей, чугунов и других прочных материалов для подготовки анализируемой поверхности применяют обработку абразивной бумагой (шкуркой) или абразивным камнем средней крупности, 40 или 60 по ГОСТ 3647-80. При этом следует иметь в виду, что многие абразивные материалы при шлифовке вносят в поверхность пробы с частицами абразива кремний, алюминий и фосфор, что может повлиять на результаты анализа.

Эмиссионный спектральный анализ - сложная процедура, состоящая из целого ряда различных операций:

  1. Выбор спектральных линий анализируемых элементов и настройка спектрометра на эти линии;
  2. Подбор оптимальных режимов анализа конкретных материалов;
  3. Подбор стандартных образцов для градуировки спектрометра;
  4. Градуировка спектрометра по выбранным стандартным образцам;
  5. Отбор пробы и подготовка ее к анализу;
  6. Экспонирование (прожиг) пробы на эмиссионном спектрометре (как правило, 2-х или 3-х кратное);
  7. Обработка результатов.

Для получения достоверных результатов анализа необходимо чтобы все перечисленные выше операции были выполнены правильно с соблюдением всех необходимых требований. При этом важно понимать, какова погрешность полученных результатов.

Совокупность всех перечисленных выше операций и называется Методикой выполнения измерений.

Конечно, если Вы проводите анализ материалов «для себя», достаточно того, что Ваши лаборанты знают, как выполнять все перечисленные операции и делают это достаточно аккуратно и качественно. Однако если Вы хотите, чтобы полученные результаты были убедительны для Ваших заказчиков, которым Вы поставляете продукцию, Ваших поставщиков или других сторонних организаций, Вам необходимо разработать официальный документ, регламентирующий весь порядок подготовки и проведения анализа - Методику выполнения измерений (МВИ).

Разработанная МВИ должна быть аттестована в установленном порядке. Основная цель аттестации МВИ - подтверждение возможности измерений по данной МВИ с погрешностью измерений, не превышающую указанную в документе, регламентирующем МВИ.

Порядок разработки и аттестации МВИ определяется ГОСТ Р 8.563-96 «Методики выполнения измерений».

В настоящее время существует целый ряд МВИ, прошедших аттестацию и стандартизацию и доведенных до уровня Государственных стандартов.

Перечень (неполный) таких ГОСТов приведен ниже:

ГОСТ 5905-2004. (ИСО 10387:1994) Хром металлический. Методы атомно-эмиссионного спектрального анализа.

ГОСТ 22536.0-87. Сталь углеродистая и чугун нелегированный. Общие требования к методам анализа.

ГОСТ 27809-95.

ГОСТ 2787-75. Металлы черные вторичные. Общие технические условия.

ГОСТ 7565-81. Чугун, сталь и сплавы. Метод отбора проб для химического состава.

ГОСТ 27611-88. Чугун. Метод фотоэлектрического спектрального анализа.

ГОСТ 27809-88. Чугун и сталь. Методы спектрографического анализа.

ГОСТ 15527-2004. Сплавы медно-цинковые (латуни), обрабатываемые давлением. Методы атомно-эмиссионного спектрального анализа.

ГОСТ 24231-80. Цветные металлы и сплавы. Методы спектрального анализа.

ГОСТ 12223.1-76. Иридий. Метод спектрального анализа.

ГОСТ 12227.1-76. Родий. Метод спектрального анализа.

ГОСТ 6012-98. Никель, Методы химико-атомно-эмиссионного спектрального анализа.

ГОСТ 24018.0-90. Сплавы жаропрочные на никелевой основе. Общие требования к методам анализа.

ГОСТ 3240.0-76. Сплавы магниевые. Общие требования к методам анализа.

ГОСТ 15483.10-2004. Олово. Методы атомно-эмиссионного спектрального анализа.

ГОСТ 21996-76. Лента стальная холоднокатаная термообработанная. Методы фотоэлектрического спектрального анализа.

ГОСТ 9717.1-82. Медь. Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектра.

ГОСТ 20068.3-79. Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра.

ГОСТ 9716.2-79. Сплавы медно-цинковые. Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектра.

ГОСТ 24231-80. Цветные металлы и сплавы. Общие требования к отбору и подготовке проб для химического анализа.

ГОСТ 13348-74. Сплавы свинцово-сурьмянистые. Метод спектрального анализа.

ГОСТ 17261-77. Цинк. Спектральный метод анализа.

ГОСТ 23328-78. Сплавы цинковые антифрикционные. Методы спектрального анализа.

ГОСТ 8857-77. Свинец. Метод спектрального анализа.

ГОСТ 9519.0-82. Баббиты кальциевые. Общие требования к методам спектрального анализа.

ГОСТ 9519.1-77. Баббиты кальциевые. Метод спектрального анализа по литым металлическим стандартным образцам.

ГОСТ 9519.2-77. Баббиты кальциевые. Метод спектрального анализа по синтетическим стандартным образцам.

ГОСТ 23902-79. Сплавы титановые. Методы спектрального анализа.

ГОСТ 7727-81. Сплавы алюминиевые. Метод спектрального анализа.

ГОСТ ИСО 7347-94. Ферросплавы. Экспериментальные методы контроля систематической погрешности отбора и подготовки проб

ГОСТ Р 50065-92. Ферросплавы. Экспериментальные методы оценки вариации качества и методы контроля точности отбора проб.

МЕТОД ФОТОЭЛЕКТРИЧЕСКОГО СПЕКТРАЛЬНОГО АНАЛИЗА

ГОСТ 18895-81

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

РАЗРАБОТАН Министерством черной металлургии СССР ИСПОЛНИТЕЛИ

Н. П. Лякишев, В. П. Замараев, Н. В. Буянов, А. В. Титовец, А. В. Кри-невская, А. И. Устинова, Е. А. Свешникова.

ВНЕСЕН Министерством черной металлургии СССР

Член Коллегии А. А. Кугушин

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением венного комитета СССР по стандартам от 29 декабря 1981 г.>

ГОСТ 18895-81 Стр. 9

Продолжение табл. 2

Контролируемый элемент

Допускаемое расхождение результатов первичного и повторного анализа, d a , К

От 0,010 до 0,025

Св. 0‘,025 > 0,05

» 0,50 > 1,00

От 0,010 до 0,020

Св. 0,020 » 0,040

> 0,040 » 0,080

» 0,080 » 0,15

От 0,01 до 0,02

Св. 0,02 » 0,04

От 0,005 до 0,010

Св. 0,010 > 0,025

» 0,025 » 0,050

Алюминий

» 0,050 » 0,10

> 0,10 » 0,20

От 0,005 до 0,010

Св. 0,010 * 0,020

» 0,020 » 0,040

» 0,040 » 0,10

» 0,10 > 0,20

От 0,01 до 0,02

Молибден

Св. 0,02 » 0,05

> 0,10 » 0,25

УДК 669.14.001.4:006.354 Группа В39

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Метод фотоэлектрического спектрального анализа

Steel. Method of photoelectric spectral analysis

Взамен ГОСТ 18895-73

Постановлением Государственного комитета СССР по стандартам от 29 декаб> ря 1981 г. № 5720 срок действия установлен

с 01.01. 1983 г. до 01.01. 1988 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает фотоэлектрический спектральный метод определения в стали элементов, %:

марганец

алюминий

молибден

вольфрам

Издание официальное ★

Перепечатка воспрещена

© Издательство стандартов, 1982

Метод основан на возбуждении атомов стали электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов, пропорциональных интенсивности или логарифму интенсивности спектральных линий, и последующем определении содержания элементов с помощью градуировочных характеристик.

1. ОТБОР И ПОДГОТОВИЛ ПРОБ

1.1. Отбор и подготовка проб - по ГОСТ 7565-81 . Поверхность пробы, предназначенную для обыскривания, затачивают на плоскость. На поверхности не допускаются раковины, шлаковые включения, цвета побежалости и другие дефекты; шероховатость поверхности Rz должна быть не более 20 мкм по ГОСТ 2789-73 .

2. АППАРАТУРА И МАТЕРИАЛЫ

2.1. Фотоэлектрические вакуумные и воздушные установки индивидуальной градуировки.

Отрезные станки типа 8230 и 2К337.

Шлифовальный станок модели ЗЕ881.

Точильно-шлифовальный станок (обдирочно-наждачный) типа ТШ 500.

Универсальный станок для заточки электродов модели КП-35.

Токарно-винторезный станок модели 1604.

Отрезные диски 400X4X32 по ГОСТ 21963-76 .

Электрокорундовые абразивные круги с керамической связкой, зернистостью № 50, твердостью СТ-2, размером 300X40X70 по ГОСТ 2424-75 .

Шлифовальная шкурка типа ШБ-200, зернистостью № 40-50 по ГОСТ 6456-75 .

2.2. В случае применения вакуумных фотоэлектрических установок используют постоянные электроды-прутки серебряные, медные и вольфрамовые диаметром 5-6 мм или вольфрамовая проволока диаметром 1-2 мм, длиною не менее 50 мм.

Для воздушных фотоэлектрических установок используют медные прутки марки М00, Ml, М2 по ГОСТ 858-78 и угольные стержни диаметром 6 мм, длиною не менее 50 мм.

2.3. Для определения массовой доли элементов в прокатной стали применяют вакуумные и воздушные фотоэлектрические установки. Если образец не перекрывает полностью отверстие в штативе вакуумной фотоэлектрической установки, применяют контактную камеру (см. чертеж) или другое приспособление, ограничивающее отверстие в столе штатива.

ГОСТ 18895-81 Стр. 3

Контактная камера для вакуумного спектрометра

/-контакт: 2-пиужина; Я-пластина: 4-прокладка

2.4. Допускается применение другой аппаратуры, оборудования и материалов, обеспечивающих точность анализа, предусмотренную настоящим стандартом.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Подготовку установки к выполнению измерений проводят согласно описанию по обслуживанию и эксплуатации установки.

3.2. Градуировку каждой фотоэлектрической установки осуществляют экспериментально при внедрении методики выполнения измерений с помощью стандартных образцов (СО) состава, аттестованных в соответствии с ГОСТ 8.315-78 .

3.3. При первичной градуировке выполняют не менее пяти серий измерений в разные дни работы фотоэлектрической установки. В серии для каждого СО проводят по две пары параллельных (выполняемых одно за другим на одной поверхности) измерений.

Порядок пар параллельных измерений для всех СО в серии рандомизируют. Вычисляют среднее арифметическое значение аналитических сигналов по серии и среднее арифметическое значение аналитических сигналов для пяти серий измерений для каждого СО.

Расчетным или графическим способом устанавливают градуировочные характеристики, которые выражают в виде формулы, графика или таблицы.

Градуировочные характеристики используют для определения массовой доли контролируемых элементов непосредственно или с учетом влияния химического состава и физико-химических свойств объекта.

3.4. Повторную градуировку выполняют в соответствии с п. 3.3, при этом допускается сокращение числа измерений.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Условия проведения анализа приведены в рекомендуемом приложении (см. табл. 1, 2).

4.2. Длины волн спектральных линий и диапазон значений массовой доли приведены в табл. 1.

Таблица 1

Определяемый эле-

Длина волны опреде-

Мешающие элементы

Диапазон значений

ляемого элемента, нм

массовой доли эле

Железо, вольф

Железо, вольфрам

Ванадий, железо

Марганец

ГОСТ 18895-81 Стр. 5

Продолжение табл. 1

Определ яемый элемент

Мешающие элементы

Диапазон значений массовой доли элементов, %

Вольфрам

Вольфрам

Вольфрам

Вольфрам

Кобальт, вольфрам

Вольфрам

Марганец, титан

Ниобий, марганец

Вольфрам

Алюминий

Молибден, цирконий

Продолжение табл. 1

Определяемый

Длина волны определяемого элемента, нм

Мешающие элементы

Диапазон значений массовой доли эле

Алюминий

Молибден

Вольфрам

Алюминий

Вольфрам

Железо, титан

Вольфрам, нио

Титан, железо

Вольфрам

ГОСТ 18895-81 Стр, 7

Продолжение табл. 1

Определяемый

Длина волны опреде-

Мешающие элементы

Диапазон значений

ляемого элемента, нм

массовой доли эле

Ванадий, вольф

рам, медь

Вольфрам, хром

Вольфрам, желе

Вольфрам, желе

Вольфрам

Кобальт, ванадий

Вольфрам

282.33 297,01 300,96 309,16 438,35 440,48 447,60

Линии сравнения

Из приведенных линий для конкретной аналитической методики выбирают оптимальные линии в зависимости от их интенсивности типа фотоэлектрической установки, наложения других линий, возможности размещения выходных щелей на каретках прибора.

4.3. Выполняют три параллельных измерения для каждого контролируемого элемента анализируемой пробы. Допускается выполнять два параллельных измерения.

Стр. 8 ГОСТ 18895-81

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. За окончательный результат анализа принимают среднее арифметическое двух или трех параллельных определений.

5.2. Если расхождение значений аналитического сигнала, выраженное в единицах массовой доли, не более d cx (табл. 2) для трех параллельных измерений или 0,8 d cx для двух параллельных измерений, вычисляют среднее арифметическое этих определений.

Таблица 2

Контролируемый элемент

Диапазон значений массовой доли, %

Допускаемое расхождение трех параллельных измерений

Допускаемое расхождение результатов первичного и повторного анализа, d B . %

От 0,01 до 0,020

Св. 0,020 » 0,040

> 0,040 > 0,10

От 0,004 до 0,010

Св. 0,010 » 0,025

» 0,025 » 0,050

» 0,050 » 0,10

От 0,004 до 0,008

Св. 0,008 > 0,015

» 0,015 > 0,03

От 0,010 до 0,020

Св. 0,020 » 0,050

» 0,050 » 0,10

» 0,10 »■ 0,20

> 1,00 » 2,50

От 0,05 до 0,10

Св. 0,10 » 0,20

Марганец

» 0,80 » 1,60 » 1,60 » 2,20

Наименование документа ГОСТ 18895-97 Сталь. Метод фотоэлектрического спектрального анализа
Дата начала действия 01.01.2000
Дата принятия 25.12.1998
Статус Действующий
На замену ГОСТ 18895-81
Утверждающий документ Приказ от 25.12.1998 № 1018
Вид документа ГОСТ (Межгосударственный стандарт)
Шифр документа 18895-97
Разработчик
Принявший орган Межгосударственный технический комитет МТК 145 «Методы контроля металлопродукции»

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ
МЕТОД ФОТОЭЛЕКТРИЧЕСКОГО СПЕКТРАЛЬНОГО АНАЛИЗА

ГОСТ 18895-97

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск

Предисловие

1 РАЗРАБОТАН Российской Федерацией, Межгосударственным техническим комитетом МТК 145 «Методы контроля металлопродукции»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11-97 от 25 апреля 1997 г.)

3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 сентября 1997 г. № 332 межгосударственный стандарт ГОСТ 18895-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

4 ВЗАМЕН ГОСТ 18895-81

1 Область применения

3 Отбор и подготовка проб

4 Аппаратура и материалы

5 Подготовка к анализу

6 Проведение анализа

7 Обработка результатов

Приложение А Условия проведения анализа на фотоэлектрических установках

ГОСТ 18895-97

Steel. Method of photoelectric spectral analysis

Дата введения 1998-01-01

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает фотоэлектрический спектральный метод определения в стали массовой доли элементов, %:

углерода

марганца

кобальта

алюминия

молибдена

вольфрама

циркония

Метод основан на возбуждении атомов элементов стали электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов, пропорциональных интенсивности или логарифму интенсивности спектральных линий, и последующем определении массовых долей эле­ментов с помощью градуировочных характеристик.

ГОСТ 8.315-97 ГСИ. Стандартные образцы состава и свойств веществ и материалов. Основ­ные положения

ГОСТ 859-78 Медь. Марки

ГОСТ 2424-83 Круги шлифовальные. Технические условия

ГОСТ 6456-82 Шкурка шлифовальная бумажная. Технические условия

ГОСТ 7565-81 (ИСО 377-2-89) Чугун, сталь и сплавы. Метод отбора проб для химического состава

ГОСТ 10157-79 Аргон газообразный и жидкий. Технические условия

ГОСТ 21963-82 Круги отрезные. Технические условия

JavaScript is currently disabled. Please enable it for a better experience of Jumi .

Полная версия документа доступна бесплатно авторизованным пользователям