Домой / Бизнес  / Презентация на тему биосинтез белка рисунки. Презентация на тему "биосинтез белка ". связь малой субъединицы рибосомы с большой

Презентация на тему биосинтез белка рисунки. Презентация на тему "биосинтез белка ". связь малой субъединицы рибосомы с большой

1-бгд 2-агбвд 3-вабдг 4- 2,4,7

1. Выберите три правильно названных свойства генетического кода. A) Код характерен только для эукариотических клеток и бактерий Б) Код универсален для эукариотических клеток, бактерий и вирусов B) Один триплет кодирует последовательность аминокислот в молеку­ле белка Г) Код вырожден, так аминокислоты могут кодироваться несколькими кодонами Д) Код избыточен. Может кодировать более 20 аминокислот Е) Код характерен только для эукариотических клеток 2. Постройте последовательность реакций биосинтеза белка. A) Снятие информации с ДНК Б) Узнавание антикодоном тРНК своего кодона на иРНК B) Отщепление аминокислоты от тРНК Г) Поступление иРНК на рибосомы Д) Присоединение аминокислоты к белковой цепи с помощью фермента 3. Постройте последовательность реакций трансляции. A) Присоединение аминокислоты к тРНК Б) Начало синтеза полипептидной цепи на рибосоме B) Присоединение иРНК к рибосоме Г) Окончание синтеза белка Д) Удлинение полипептидной цепи 4. Найдите ошибки в приведенном тексте. 1. Генетическая информация заключена в последовательности нуклео-тидов в молекулах нуклеиновых кислот. 2. Она передается от иРНК к ДНК. 3. Генетический код записан на «языке «РНК». 4. Код состоит из четырех нуклеотидов. 5. Почти каждая аминокислота шифруется более чем одним кодоном. 6. Каждый кодон шифрует только одну аминокис­лоту. 7. У каждого живого организма свой генетический код.

СГБОУ ПО

«Севастопольский медицинский колледж имени Жени Дерюгиной»

Преподаватель

Смирнова З. М.


Правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул .

1 фермент

(белок)

(1 ген)

1признак

Нормальный обмен глюкозы

инсулин

Цвет глаз

меланин


Основная роль в определении структуры

синтезируемого белка принадлежит ДНК.

ДНК – полимер из нуклеотидов, а белок из аминокислот.

Разных нуклеотидов – 4

Разных аминокислот – 20

Для того, чтобы 4 нуклеотида могли кодировать 20 аминокислот, они должны быть в определенных сочетаниях. Экспериментальным путем было выяснено, что это последовательность из трех нуклеотидов – триплет (или кодон). Разных триплетов из четырех по три будет 64, а аминокислот 20, следовательно, одна и та же аминокислота кодируется несколькими триплетами. И только метионин и триптофан кодируется одним триплетом.

Из 64 возможных триплетов 61 кодируют 20 аминокислот, а 3 (стоп - кодоны) кодируют окончание биосинтеза белка.


Последовательность из трех нуклеотидов – триплет, шифрует одну аминокислоту.

Три нуклеотида, шифрующих одну аминокислоту, на ДНК – кодоген.

Три нуклеотида, шифрующих одну аминокислоту, на РНК – кодон.

1фермент

1ген (ДНК)

иРНК

Т – А

Ц – Г

Ц – Г

Г – Ц

Т – А

Т – А

Ц – Г

Г – Ц

Г – Ц

А – Т

Г – Ц

Т – А

кодоген

кодон

триплет

триплет

кодоген

кодон

триплет

триплет

кодоген

кодон

триплет

триплет

кодоген

кодон

триплет

триплет

4 = 64 = 61 (20 аминокислот) + 3 (стоп- кодона)


Третий нуклеотид кодона

Первый нуклеотид кодона

Второй нуклеотид кодона

система расположения нуклеотидов в ДНК, а также мРНК определяющая последовательность расположения аминокислот в белке


  • универсальность – код един для всех живых организмов;
  • вырожденность – одну аминокислоту кодируют от 2 до 6

триплетов;

  • триплетность – одну аминокислоту кодируют 3 нуклеотида;
  • неперекрываемость – нуклеотид одного триплета не может

входить в состав соседнего триплета;

  • специфичность – один триплет кодирует строго

определенную одну аминокислоту;

  • однонаправленность – код читается только в одном

направлннии: – 3"- 5" (c ДНК) и 5"- 3" (с иРНК)


Клетка

Ядро

Пептидная связь

Аминоацил-

Т РНК

Большая субъединица

рибосомы

Информационная

(м) РНК

Малая субъединица

рибосомы

Трансляция


I этап – транскрипция (протекает в ядре)

Синтез белка происходит на рибосоме, а информация о структуре белка зашифрована на ДНК в ядре. Передача информации о белке осуществляется иРНК, которая синтезируется на одной из цепей молекулы ДНК по принципу комплементарности.

5’ ATA TTT TAT AAA ЦЦЦ ATA TAT AAA TГT ATA ATA AAГ 3’

ХЕЛИКАЗА

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

3’ TAT AAA ATA TTT ГГГ TAT ATA TTT AЦA TAT TAT TTЦ 5’

про- иРНК

5’ AУA УУУ УAУ AAA ЦЦЦ AУA УAУ AAA УГT AУA AУA AAГ 3’

Переписывание информации с ДНК на иРНК называется транскрипцией.


Процессинг – созревание иРНК: предшественница иРНК (про- иРНК) содержит в себе ряд бессмысленных участков – интронов. В результате созревания иРНК, интроны с помощью фермента рестриктазы вырезаются, а оставшиеся экзоны – смысловые участки, несущие информацию о белке, сшиваются ферментом лигазой в цепочку.

Про- иРНК

Зрелая иРНК

АААА

Процесс сшивания иРНК в одну нить называется сплайсингом.


Антикодон

Синтез белка условно разделен на 5 стадий:

аминоацил - тРНК


стартовый

кодон

поступившая из ядра в цитоплазму мРНК соединяется с малой субъединицей рибосомы.

  • Первый кодон у всех мРНК – стартовый кодон АУГ к

которому присоединяется аминоацил- тРНК -метионин,

именуемый инициаторной тРНК, т.к.обеспечивает

связь малой субъединицы рибосомы с большой.


  • Вторая тРНК соединённая с аминокислотой приходит в

рибосому и своим антикодоном (верхушка тРНК) соединяется с

кодоном мРНК временными водородными связями, согласно

принципу комплементарности.

  • Аминокислота на ножке тРНК соответствует кодону мРНК.
  • Между первой аминокислотой (метионином) и второй

образуется пептидная связь.

  • После образования пептидной связи первая тРНК

сбрасывается с рибосомы и пустая уходит в цитоплазму, а

рибосома перемещается на следующий триплет мРНК, к

которому приходит третья тРНК с аминокислотой, антикодон

которой соответствует кодону мРНК,после чего между второй

и третьей аминокислотами вновь образуется пептидная связь,

вторая тРНК уходит, оставляя аминокислоту, а рибосома

делает “шажок “ на следующий триплет.

Дальнейшее удлинение пептидной цепи происходит путём

повторения предыдущих фаз.


характеризуется удлинением полипептидной цепи в строгом соответствии с порядком кодонов в молекуле мРНК.

пептидная связь

полипептид


протеин

стоп кодон

  • мРНК имеет участок, содержащий

один из стоп- кодонов

  • При контакте рибосомы с этими

кодонами синтез прекращается

  • Синтезированная полипептидная

цепь отделяется от тРНК, а рибосома

распадается.



I этап – транскрипция –

переписывание информации с ДНК на иРНК (протекает в ядре):

II этап – трансляция –

синтез белка (протекает в цитоплазме),

условно разделен на 5 стадий:

1.Стадия активизации аминокислот –

аминокислоты присоединяются к ножке тРНК, образуя комплекс аминоацил - тРНК.

2.Стадия инициации – поступившая из ядра в цитоплазму мРНК соединяется с малой субъединицей рибосомы, а затем

с большой.

3.Стадия элонгации – характеризующаяся удлинением полипептидной цепи в строгом соответствии с порядком

кодонов в молекуле мРНК

4.Стадия терминации – окончание биосинтеза белка на стоп-кодоне.

5.Конформационная стадия – биосинтез белка заканчивается формированием

II, III и, если надо, IV структур.

про- РНК (незрелая) подвергается процессингу (созреванию)

  • вырезаются и

удаляются интроны

  • сплайсинг (сшивание

Цель урока: формирование понимания процесса биосинтеза белка Содержание: Теоретическая часть: Теоретическая часть: Введение ВведениеВведение Генетический код Генетический кодГенетический кодГенетический код Транскрипция ТранскрипцияТранскрипция Транспортные РНК Транспортные РНКТранспортные РНКТранспортные РНК Трансляция ТрансляцияТрансляция Практическая часть Практическая часть Контрольный тест Контрольный тестКонтрольный тестКонтрольный тест EXIT


Введение: Наиболее важный процесс ассимиляции в клетке – синтез присущего ей белка.(очень энергоемкий процесс,берущий энергию от АТФ),(т.к. в процессе жизни все белки рано или поздно разрушаются,клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т.п., а особенно интенсивно синтез белка идет в клетках имеющих определенную функцию – это такие клетки как клетки желез внутренней секреции и т. п.) Наиболее важный процесс ассимиляции в клетке – синтез присущего ей белка.(очень энергоемкий процесс,берущий энергию от АТФ),(т.к. в процессе жизни все белки рано или поздно разрушаются,клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т.п., а особенно интенсивно синтез белка идет в клетках имеющих определенную функцию – это такие клетки как клетки желез внутренней секреции и т. п.)ассимиляции Многообразие функций белков определяется их первичной структурой.А наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК. Многообразие функций белков определяется их первичной структурой.А наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК. первичной структуройА наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК. первичной структуройА наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК.








Генетический код: Генетический код – соответствие триплетных сочетаний нуклеотидов ДНК к той или иной из 20 аминокислот, входящих в состав белков; универсален для всех живых организмов. Генетический код – соответствие триплетных сочетаний нуклеотидов ДНК к той или иной из 20 аминокислот, входящих в состав белков; универсален для всех живых организмов.триплетных В состав ДНК входят 4 азотистых основания:аденин (А),гуанин(Г), тимин(Т),цитозин(Ц). В состав ДНК входят 4 азотистых основания:аденин (А),гуанин(Г), тимин(Т),цитозин(Ц). Очень важное свойство генетического кода – 1 триплет всегда обозначает 1-у единственную аминокислоту Очень важное свойство генетического кода – 1 триплет всегда обозначает 1-у единственную аминокислоту




ТРАНСКРИПЦИЯ: Первый этап биосинтеза белкатранскрипция. Первый этап биосинтеза белкатранскрипция. Транскрипцияэто переписывание информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. Транскрипцияэто переписывание информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. В определенном участке ДНК под действием ферментов белки-гистоны отделяются, водородные связи рвутся, и двойная спираль ДНК раскручивается. Одна из цепочек становится матрицей для построения мРНК. Участок ДНК в определенном месте начинает раскручиваться под действием ферментов. ДНК матрица Г Ц А Т Г Г А Ц Г А Т Г Г А Ц Г А Ц Т


А Т Г Г А Ц Г А Ц Т У А Ц Ц У Г Ц У Г А мРНК Водородная связь Сложно-эфирная связь Между азотистыми основаниями ДНК и РНК возникают водородные связи, а между нуклеотидами самой матричной РНК образуются сложно-эфирные связи. Затем на основе матрицы под действием фермента РНК-ПОЛИМЕРАЗЫ из свободных нуклеотидов по принципу комплементарности начинается сборка мРНК.


ТРАНСПОРТНЫЕ РНК: Т.К. в состав белков входят около 20 аминокислот, существует столько же видов тРНК. Т.К. в состав белков входят около 20 аминокислот, существует столько же видов тРНК. Строение всех тРНК сходно. Строение всех тРНК сходно. Служат для осуществления переноса аминокислотных остатков к матричной РНК


ТРАНСЛЯЦИЯ Второй этап биосинтеза– трансляция. Трансляция– перевод последовательности нуклеотидов в последовательность аминокислот белка. В цитоплазме аминокислоты под строгим контролем ферментов аминоацил-тРНК-синтетаз соединяются с тРНК, образуя аминоацил-тРНК. Это очень видоспецифичные реакции: определенный фермент способен узнавать и связывать с соответствующей тРНК только свою аминокислоту. мРНК АГУ У Ц А У ЦА А Г У а/к а/к а/ к У У Г А Ц У У Г Ц


Далее тРНК движется к мРНК и связывается комплементарно своим антикодоном с кодоном мРНК. Затем второй кодон соединяется с комплексом второй аминоацил-тРНК, содержащей свой специфический антикодон. Антикодон– триплет нуклеотидов на верхушке тРНК. Кодон– триплет нуклеотидов на мРНК. мРНК АГУ У Ц А У Ц А А Г У а/ к а/к У У Г А Ц У У Г Ц Водородные связи между комплементарными нуклеотидами


После присоединения к мРНК двух тРНК под действием фермента происходит образование пептидной связи между аминокислотами; первая аминокислота перемещается на вторую тРНК, а освободившаяся первая тРНК уходит. После этого рибосома передвигается по нити для того, чтобы поставить на рабочее место следующий кодон. мРНК АГУ У Ц А У Ц А А Г У а/к а/ к У У Г А Ц У У Г Ц Пептидная связь а/ к


Такое последовательное считывание рибосомой заключенного в мРНК «текста» продолжается до тех пор, пока процесс не доходит до одного из стоп-кодонов (терминальных кодонов). Такими триплетами являются триплеты УАА, УАГ,УГА. Одна молекула мРНК может заключать в себе инструкции для синтеза нескольких полипептидных нитей. Кроме того, большинство молекул мРНК транслируется в белок много раз, так как к одной молекуле мРНК прикрепляется обычно много рибосом. мРНК на рибосомах белок Наконец, ферменты разрушают эту молекулу мРНК, расщепляя ее до отдельных нуклеотидов.


Контрольный тест 1. Матрицей для синтеза молекулы мРНК при транскрипции служит: а) вся молекула ДНК б) полностью одна из цепей молекулы ДНК в) участок одной из цепей ДНК г) в одних случаях одна из цепей молекулы ДНК, в других– вся молекула ДНК. молекула ДНК. 2. Транскрипция происходит: а) в ядре б) на рибосомах в) в цитоплазме г) на каналах гладкой ЭПС 3. Последовательность нуклеотидов в антикодоне тРНК строго комплементарна: комплементарна: а) триплету, кодирующему белок б) аминокислоте, с которой связана данная тРНК в) последовательности нуклеотидов гена г) кодону мРНК, осуществляющему трансляцию


4. Трансляция в клетке осуществляется: а) в ядре б) на рибосомах в) в цитоплазме г) на каналах гладкой ЭПС 5. При трансляции матрицей для сборки полипептидной цепи белка служат: служат: а) обе цепочки ДНК б) одна из цепей молекулы ДНК в) молекула мРНК г) в одних случаях одна из цепей ДНК, в других– молекула мРНК 6. При биосинтезе белка в клетке энергия АТФ: а) расходуется б) запасается в) не расходуется и не выделяется г) на одних этапах синтеза расходуется, на других– выделяется 7. Исключите лишнее: рибосомы, тРНК, мРНК, аминокислоты, ДНК. 8. Участок молекулы тРНК из трех нуклеотидов, комплементарно связывающийся с определенным участком мРНК по принципу связывающийся с определенным участком мРНК по принципу комплементарности называется… комплементарности называется…


9. Участок молекулы ДНК, с которым соединяется особый белок- репрессор, регулирующий транскрипцию отдельных генов,--… репрессор, регулирующий транскрипцию отдельных генов,--… 10. Последовательность азотистых оснований в молекуле ДНК 10. Последовательность азотистых оснований в молекуле ДНК следующая: АТТААЦГЦТАТ. Какова будет последовательность следующая: АТТААЦГЦТАТ. Какова будет последовательность азотистых оснований в мРНК? азотистых оснований в мРНК? а) ТААТТГЦГАТА б) ГЦЦГТТАТЦГЦ в) УААУЦЦГУТУТ г) УААУУГЦГАУА

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Биосинтез белков в живой клетке Продолжить формирование знаний об основных процессах метаболизма; охарактеризовать два этапа биосинтеза белка – трансляцию и транскрипцию.

Задачи: Вспомнить значение белков для живого организма. Изучить этапы биосинтеза белков. Решить задачи «Кодирование молекул белков»

Перечислите роль белков в клетке Что такое метаболизм? Что такое ассимиляция?

1), 1, (строительная – липопротеины, каталитическая – пероксидаза, двигательная – миозин, транспортная – гемоглобин, защитная – гамма-глобулин, энергетическая -17,6 кДж/моль, регуляторная – инсулин и другие).

Проблемный вопрос: Каким образом информация о строении молекул белков записана в молекуле ДНК? Как передаётся эта информация из ядра клетки на рибосомы, где происходит синтез белка? Синтез белка происходит в клетке в период роста и развития. Основная роль в определении структуры белка принадлежит ДНК, разные участки которой определяют синтез различных белков. Участок ДНК, определяющий синтез одной молекулы белка, называются геном Ген – участок двойной спирали ДНК. И-РНК – однонитевая молекула. Длина и-РНК в сотни раз короче нити ДНК. Синтез белка идет в два этапа:

БИОСИНТЕЗ- образование органических веществ,происходящее в клетках с помощью ферментов и внутриклеточных структур ДНК---иРНК---белок Транскрипция - в ядре клетки. ДНК → иРНК с участием фермента полимеразы Универсальный способ: рибосомный синтез Раскручивание ДНК

Трансляция - в цитоплазме. Участвуют: иРНК, рибосомы, рРНК, тРНК, свободные аминокислоты, ферменты, АТФ, Мg 2+ .

Для реализации информации используется генетический код. Сущность кода состоит в том, что каждой аминокислоте соответствует участок цепи ДНК из рядом стоящих трёх нуклеотидов – триплетов. (

Избыточность – 64 сочетания кодируют 20 аминокислот. Специфичность – Один триплет соответствует только одной аминокислоте. Универсальность – Код одинаков для всех организмов.

Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК)

1 этап-ТРАНСКРИПЦИЯ 2этап-ТРАНСЛЯЦИЯ

Биосинтез белков в живой клетке Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК)


По теме: методические разработки, презентации и конспекты

Белки - природные высокомолекулярные вещества Химические свойства белков

Материал урока формирует знания о составе и строении белков как высшей ступени развития вещества....

Методическая разработка урока по теме: «Химические свойства белка. Биологическая роль белков» Методическая цель: реализация профильного изучения темы.Цель урока:1) показат...

Модульный урок по биологии" Состав и строение белков. Функции белков"

Модульная технология позволяет обучающимся самостоятельно работать, общаться и помогать друг другу, оценивать свою работу и своего товарища....