Последние статьи
Домой / Бизнес планы / Что такое большая энергетика. Роль «малой» энергетики в решении проблем «большой» энергетики. Востребованность на рынке труда

Что такое большая энергетика. Роль «малой» энергетики в решении проблем «большой» энергетики. Востребованность на рынке труда

Есть люди, утверждающие, что малая энергетика — это хорошо. Есть другие, которые утверждают, что малая энергетика — «ересь», и единственным правильным вариантом является энергетика большая. Мол, присутствует эффект масштаба, вследствие чего «большая электроэнергия» дешевле. Оглянитесь вокруг. И на Западе, и на Востоке активно строятся малые электростанции, как в дополнение к большим станциям, так и вместо них.

Малые электростанции сегодня немногим уступают «старшему брату» в КПД, но солидно выигрывают в гибкости работы, а также быстроте строительства и ввода в эксплуатацию. Собственно, в этой публикации я покажу, что сегодня «большая» энергетика вряд ли способна единолично справиться с задачей надежного и недорогого электроснабжения потребителей России. В том числе, по специфическим причинам, напрямую с энергетикой не связанным.

69 000 руб. за кВт — стоимость Сочинской ТЭЦ…

Как известно, чем крупнее стройка, тем дешевле ее удельная стоимость. Например, затраты на создание малых электростанций с утилизацией тепла составляют около $ 1000 за кВт установленной электрической мощности. Стоимость крупных станций должна укладываться в $ 600-900 за кВт. А теперь рассмотрим, как обстоит дело в России.

1. Удельная стоимость Сочинской ТЭЦ (2004 г.) составила около $ 2460 за кВт. Установленная электрическая мощность: 79 МВт, тепловая: 25 Гкал/ч. Объем инвестиций: 5,47 млрд руб. Курс доллара на 1 декабря 2004 г.: 28,1496 руб. за $ 1. Строительство проводилось в рамках федеральной целевой программы «Юг России».

2. Инвестиционная программа РАО «ЕЭС России» (дата публикации — осень 2006 г.): планирует за пять лет потратить 2,1 трлн (2 100 000 000 000) руб. на строительство электростанций и сетей. Это самая дорогостоящая в России программа. Она превышает все инвестиционные расходы федерального бюджета вместе с инвестиционным фондом на следующий год (807 млрд руб.). Она больше, чем Стабилизационный фонд (2,05 трлн руб.).

На строительство одного киловатта мощности тратится в среднем порядка $ 1100. Бывший замминистра энергетики, экс-председатель совета директоров РАО «ЕЭС» Виктор Кудрявый: «Инвестиционная программа РАО «ЕЭС» завышена на 600-650 миллиардов рублей»

3. За новую диспетчерскую систему «ЕЭС» заплатило немецкой Siemens около 80 млн евро, хотя, по мнению эксперта Центра изучения региональных проблем Игоря Технарева, аналогичная продукция уже разработана отечественными специалистами и стоит от 1 до 5 млн евро. Еще почти $ 7 млн РАО «ЕЭС» отдала Microsoft за легализацию корпоративного программного обеспечения холдинга. Как пошутил один из собеседников «Ко», такого себе не может позволить даже администрация президента.

Вывод: стоимость строительства электростанций искусственно завышается РАО «ЕЭС» в два-четыре раза. Понятно, что деньги идут в «нужный карман». Ну, а берутся они из бюджета (читай, наших налогов) или закладываются в стоимость тарифов и платы за присоединение .

Борис Грызлов: «Руководство РАО «ЕЭС России» уделяет больше внимания выплате бонусов своим сотрудникам, чем развитию отрасли» Утверждение, что Управление РАО «ЕЭС России» занимается благополучием не компании, а самого Управления, очевидно многим:

1. Председатель Государственной Думы Борис Грызлов (11 октября 2006 г.): «К сожалению, мы должны констатировать, что те мероприятия, которые были проведены РАО «ЕЭС России» до настоящего времени, не привели к устранению опасности серьезных аварий и опасности существенного повышения тарифов для населения. Звучат заявления о предстоящих зимой отключениях электроэнергии в ряде регионов. К каким последствиям могут привести такие отключения, например, во время морозов, нетрудно представить — речь идет о здоровье и даже о жизни наших граждан»

2. Руководитель Института проблем глобализации Михаил Делягин: «Реформа электроэнергетики отвлекает все силы РАО «ЕЭС» и многих сопряженных бизнес-структур на передел активов, «распил» финансовых потоков и отвод их в свой карман. Все остальные вопросы остались на периферии внимания руководства РАО «ЕЭС» — не потому, что оно плохое, а потому что так была задумана и устроена реформа» А Управление и не стесняется говорить о катастрофическом состоянии энергетики, в котором РАО «ЕЭС России», естественно, не виновато:

1. Член правления РАО «ЕЭС России» Юрий Удальцов: «В 2004 году РАО «ЕЭС России» удовлетворило только 32 % всех заявок на подключение. В 2005 году этот показатель снизился до 21 %. Предполагается, что количество подключенных к электроснабжению, будет и дальше падать: в 2006 году до 16 %, а в 2007-м до 10 %»

2. Анатолий Борисович Чубайс: «Физические возможности энергосистемы страны подходят к концу, о чем предупреждали несколько лет назад»

Вывод: в ситуации, когда электроэнергетика страны рушится,.а те, кто должен строить, «пилят» финансовые потоки, говорить об отсутствии альтернативы «большой» энергетике, мягко говоря, неразумно. Энергоавария на подстанции «Чагино» затронула Москву и четыре области

К сожалению, говорить о надежности электроснабжения сегодня не приходится. Изношенность оборудования электроэнергетики в районе 70-80 %. Многие помнят аварию на подстанции «Чагино», после которой по европейской части России прокатились веерные отключения. Напомню лишь некоторые последствия этого события:

1. В результате многочисленных аварий на подстанциях отключилось электричество в большей части районов столицы России. На юге Москвы — в районе Капотни, Марьино, Бирюлево, Чертаново около 11:00 выключилось электричество. На Ленинском проспекте, Рязанском шоссе, шоссе Энтузиастов и в районе Ордынки также не было электричества. Без электроэнергии остались Орехово-Борисово, Люберцы, Новые Черемушки, Жулебино, Братеево, Перово, Люблино…

2. Отключилось электричество в 25 городах Подмосковья, в Подольске, в Тульской и Калужской областях. Без электричества остались жилые дома и промышленные объекты. На некоторых особо опасных производствах были аварии.

3. Не работали системы кондиционирования, отключилось электричество в больницах и моргах. Встал городской транспорт. На улицах выключились светофоры — на дорогах образовались пробки. В ряде районов Москвы жители остались без воды. На насосные станции не подавалось электричество, соответственно, подача воды остановилась. В городе закрылись ларьки и магазины, так как даже в супермаркетах «тают» холодильники.

4. Прямые потери Петелинской птицефабрики 14 430 000 руб. (422 000 евро) — погибло 278,5 тыс. голов птицы.

5. Завод URSA едва не лишился основного оборудования — стекловаренной печи. Однако производственные и финансовые потери все-таки были: завод недовыпустил 263 т стекловолокна. Простой производства составил 53 ч, убытки от которого превысили 150 тыс. евро.

Московская авария 25 мая 2005 г. — самая известная, но она одна из сотен малых и крупных аварий, происходящих в России ежегодно. На сайте «Электроснабжение регионов России» (http://www.russia-energy.ru) в разделе «Надежность традиционного электроснабжения» вы можете посмотреть подбор материалов из прессы об авариях, энергодефиците в вашем регионе. Подборка не является полным собранием фактов, но некоторое представление о ситуации с надежностью электроснабжения получить можно.

Кстати, одним из самых громких стало заявление Председателя Правления РАО «ЕЭС России» Анатолия Чубайса о списке из 16 регионов России, которые зимой 2006-2007 гг. могут испытать ограничения в потреблении электроэнергии. Это Архангельская, Вологодская, Дагестанская, Карельская, Коми, Кубанская, Ленинградская (включая СанктПетербург), Московская, Нижегородская, Пермская, Свердловская, Саратовская, Тывинская, Тюменская, Ульяновская и Челябинская энергосистемы. В прошлом году в зоне риска были только Московская, Ленинградская и Тюменская энергосистемы…

Вывод: аварии и заявления Чубайса А.Б. сообщают нам о невысокой надежности традиционного электроснабжения. К сожалению, ждем новых аварий…

Немного о малой энергетике

Малая энергетика имеет свои плюсы. Во-первых, огромное преимущество быстрого ввода объектов (меньшие капитальные затраты, меньшие сроки производства оборудования и строительства «коробки», меньшие объемы топлива, много меньшие затраты на ЛЭП). Это позволит «приглушить» очень значительный энергодефицит до ввода крупных энергообъектов. Во-вторых, конкуренция всегда благотворно сказывается на качестве и стоимости услуг.

Надеюсь, успехи малой энергетики подтолкнут к более активному повышению эффективности «большой» энергетики. В-третьих, малые электростанции требуют меньше места и не ведут к высокой концентрации вредных выбросов. Этот факт можно и нужно использовать в процессе обеспечения электроэнергией и теплом нашу будущую зимнюю жемчужину, столицу Олимпийских игр 2014 г. — город Сочи. В связи с тем, что малая газовая энергетика — отрасль достаточно молодая, есть и проблемы, которые нужно признавать и решать:

  • Во-первых, отсутствие законодательной базы применительно к малым электростанциям (для автономных теплогенерирующих источников хоть что-то, но есть).
  • Во-вторых, фактическая невозможность продавать излишки электроэнергии в Сеть.
  • В-третьих, значительные затруднения при получении топлива (в подавляющем числе случаев природный газ).

Вывод: у малой энергетики в России значительный потенциал, для полного раскрытия которого понадобится время.

Итоги

Я уверен, что в нашей стране должны сосуществовать энергетики разных «весовых» категорий. Каждая имеет свои сильные и слабые стороны. И только в кооперации можно получить эффективную энергетику.

Глобальную энергетику ожидают большие перемены. В последние 10 лет в мире происходит стремительный рывок в сторону возобновляемых источников энергии. Темпы роста ветровой и солнечной энергетики в мире уже несколько лет подряд составляют 30% и более, что превышает темпы роста традиционной угольной и газовой энергетики на порядок. В кризисные 2008-2009 гг. этот рост не только не ослаб, он ускорился. И это произошло на фоне падения цен на традиционные энергоносители и, казалось бы, снова возросшую привлекательность газа, угля и нефтепродуктов.

Глобальная энергетика прирастает в основном за счет вводимых мощностей на основе ВИЭ, тогда как новая генерация на основе ископаемого топлива, как правило, лишь замещает устаревающие и неэффективные энергомощности. В 2009-2010 гг. в мире энергетики произошло знаковое событие. Впервые в истории суммарная мощность всех введенных мощностей ВИЭ превысила суммарную мощность новой топливной генерации. Тренды, наконец, пересеклись и продолжат движение в противоположных направлениях. Почему?

Общемировой тренд, мода. Правительства развитых стран, крупнейшие мировые производственные компании сделали выбор в пользу возобновляемой энергетики. Мировая элита находится в поиске нового направления развития экономики, нового приложения капитала и знаний. Одним из таких перспективных направлений пока видится именно возобновляемая энергетика.

Стоимостные показатели. Эпоха дешевых углеводородов подходит к концу. Добыча нефти, газа, угля все дальше уходит в море, в тайгу, на север или на юг. Сливки были сняты в ХХ веке. Бесспорно, что ресурсов нефти, газа и угля хватит еще на сотни веков, но эти ресурсы будут дорогими. Напротив, кВт установленной мощности ВИЭ за последние 30 лет подешевел на порядок. В некоторых случаях, цена электроэнергии, произведенной с использованием ВИЭ уже сегодня дешевле электроэнергии на углеводородном топливе.

Технический прогресс и новые технологии. Технологический прогресс, безусловно, затронул все отрасли мировой экономики. Но в области ВИЭ он в последние годы шел с заметным опережением. Эффективность оборудования увеличилась в несколько раз при постоянном снижении цены на него. Например, ветрогенераторы, установленные в Европе 10 лет назад уже морально и физически устарели. В топливной энергетике напротив, новые виды оборудования, как правило, изощреннее и дороже предшествующего.

Политические риски. Мир становится все более нестабильным, что заметно сказывается на волатильности цен на традиционные энергоносители, в конечной цене которых львиную долю составляет плата за «настроение» инвесторов и спекулянтов.

Инфраструктурные риски. Как следствие политических рисков, возникают сложности и сбои с поставками самих энергоносителей, районы добычи которых удалены от районов потребления. В середине ХХ века мир уже проходил через временной этап отказа от нефтепроводов (например, на аравийском полуострове) в пользу развития танкерных перевозок ввиду политической нестабильности в регионе. По-видимому, то же самое ожидает нас и в ближайшее время. Газовые трубопроводные мегапроекты в Евразии сталкиваются с массой конъюнктурных и политических рисков в странах транзита, на морях усиливаются влияния пиратов и т.д. Все это увеличивает риск недопоставки топлива, а соответственно, требуются большие затраты сопровождение и хранение энергоносителей.

Террористические риски. Инфраструктура топливной энергетики привлекает к себе повышенное внимание всевозможных экстремистских и радикальных сообществ. В этой связи в последние годы затраты на их охрану и безопасность возросли многократно. Объекты ВИЭ с этой точки зрения менее интересны: они маломощны, распределены по территории, их разрушение никак не угрожает жизни окружающих людей (нет смысла взрывать морской ветропарк, например).

Распределенная генерация. Все перечисленные выше риски постепенно формируют новый мировой тренд - рост мощностей распределенной генерации - переход от крупных генерирующих объектов к гораздо более мелким энергокластерам. И в эту парадигму очень удачно вписывается и энергетика на основе ВИЭ, не требующая для собственного развития создания дорогостоящей транспортной инфраструктуры (как для подвоза энергоресурсов, так и для передачи электроэнергии). Распределенная генерация на ВИЭ логично вписывается и в проблему энергосбережения и повышения энергоэффективности: большая часть энергии потребляется в месте ее производства, что исключает потерь электроэнергии при транспорте.

Экологические факторы. Здесь преимущества энергетики на основе ВИЭ по сравнению с топливной энергетикой бесспорны. Возобновляемая энергетика в качестве энергоресурсов использует энергию солнца, либо продукты жизнедеятельности человека.

Плюсы-минусы

Возобновляемую энергетику нельзя в полной мере приравнивать к зеленой. У нее тоже есть свои противники - экологи, политологи, энергетики. Так, распространено мнение, что большая ветроэнергетика является источником низкочастотных колебаний, губительных для всего живого. Бесчисленное множество птиц якобы пострадало от ветрогенераторов, а морские ветропарки вносят серьезные помехи в навигационное мышление перелетных птиц и мешают косякам рыб ориентироваться в море.

Однако, существует официальная статистка, которая говорит о том, что, например, в Германии, от работы лопастей в год погибло в 2009 году целых 3 птицы. И «неумные» немцы упорно продолжают строить жилые дома прямо под башнями ветроэлектростанций мегаваттного класса.

Солнечная энергетика также не идеальна с точки зрения «зелености». Технология получения сырья для солнечных модулей основана на хлорной химии, которая убивает все вокруг. Дескать, на этапе производства солнечных модулей полностью исчерпывается «зеленый» эффект солнечной энергетики.

По каждому из видов альтернативной энергетики можно привести подобные контраргументы.

Из двух зол принято выбирать меньшую. Мало кто при этом задумывается о загрязнении мирового пространства такими отраслями, как добыча полезных ископаемых, металлургия, традиционная большая энергетика (топливная и нетопливная). Их «вклад» мы только начинаем осознавать.

У солнечной и ветровой генерации действительно есть другие, гораздо более серьезные проблемы технологического характера. Солнце не светит ночью, солнечные модули не работают от сияния звезд и луны. Ветроэлектростанция не работает при слабом ветре или штиле. Непостоянство производства энергии во времени является действительно серьезной проблемой некоторых отраслей нетрадиционной энергетики, что неблагоприятно сказывается на КИУМ электростанций на ВИЭ, а, следовательно, на цене и сроках окупаемости проектов ВИЭ. Но для развития ВИЭ в глобальном плане эта проблема не имеет большого значения. Доказательством этому служит опыт Дании. В этой небольшой европейской стране на протяжении последних 5-7 лет доля ветровой генерации в структуре всей электроэнергетики по показателю мощности составляет около 20-25%. При этом в отдельные ветряные ночи ветроэнергетика покрывает все потребности страны в электроэнергии! В безветренную погоду доля ветроэнергетики никогда не снижается до нуля и колеблется на уровне 5-10% общих потребностей страны в электроэнергии. Это объясняется тем, что ветроэлектростанции относительно равномерно распределены по всей территории страны и полное отсутствие ветра во всех точках крайне маловероятно. В дни штиля датчане покрывают дефицит собственной генерации электроэнергией из Норвегии, выработанной на местных гидроэлектростанциях. Описанный выше вариант функционирования альтернативной энергетики позволяет сделать несколько интересных выводов, справедливых как для Дании, так и для любой другой страны:

Даже в Дании энергетика на основе ВИЭ не ставит перед собой целью полностью вытеснить традиционную энергетику, хотя в глобальном плане утверждены ориентиры к 2030 году довести долю ветроэнергетики в структуре энергопроизводства страны до 50%.
- Альтернативная энергетика скорее удачно дополняет традиционную энергетику, позволяя достаточно гибко реагировать на изменения спроса. Базовая выработка электроэнергии даже в наиболее развитых с точки зрения развития ВИЭ странах все равно базируется на топливной генерации. Такое положение в ближайшие годы не изменится, поскольку пока не придуманы и не опробированы технологии накопления и распределения больших объемов энергии и сеть небольших электростанций на основе ВИЭ все еще не развита повсеместно.
- Энергетика на основе ВИЭ максимально эффективна в случае комбинации нескольких ее видов или в случае комбинации с традиционной энергетикой и использовании интеллектуальных сетей (smart grid)

Место России

Где же место России в мире глобальной возобновляемой энергетики? По показателю установленной мощности энергетики на ВИЭ (без учета большой гидроэнергетики) РФ занимает место близкое к концу первой сотни, по показателю доли ВИЭ в структуре энергетического баланса (менее 1%) мы уже за пределами первой сотни стран. Более чем в ста странах мира в той или иной степени на законодательном уровне закреплена поддержка энергетики на ВИЭ. Из всех развитых стран мира только в РФ фактически отсутствуют работающие законодательные инициативы по поддержке ВИЭ, не говоря уже о прямых мерах по стимулированию ВИЭ типа «зеленых» тарифов. Россия пока находится в стороне… И это при том, что еще несколько десятилетий назад, в средине XX века СССР был пионером развития энергетики на основе ВИЭ в мире.

В чем причина такого состояния дел? Возможно, у нас свой особый путь развития экономики? Может быть, Запад блефует, преумножая достоинства альтернативной энергетики?

Консервативность политической элиты, нежелание реального развития страны, боязнь и недоверие к новым технологиям. Мощное «антиальтернативное» нефтегазовое лобби на уровне первых лиц государства, а также тотальное господство мифов о дороговизне, малой эффективности и неконкурентоспособности энергетики на основе ВИЭ, основанное на информации и статистике середины 1980-х гг., в соответствующих министерствах привели к полному застою в этой области в РФ. Мы пропускаем вперед даже слаборазвитые страны Тропической Африки, Латинской Америки и Океании, в которых как грибы после дождя созревают соответствующие законы, принимаются программы поддержки развития ВИЭ, осуществляются первые проекты. Для развивающихся стран это шанс построить новую энергетику и перейти на следующий виток экономического развития минуя углеводородную стадию.
Интересно, что даже такие «углеводородные» гиганты, как ОАЭ, Катар не стесняются идти в ногу со временем по вопросам развития ВИЭ. Более того, эти страны наряду с развитыми странами Европы и США стремятся занять лидирующие позиции в этом направлении энергетики. В ОАЭ развивается проект МАСДАР, включающий в себя первый в мире ультрасовременный экогород полностью на ВИЭ с технологическим университетом со специализацией на ВИЭ, жилыми, общественными, торговыми зданиями.

Пекин и Лондон - олимпийские столицы 2008 и 2012 гг., сделали ставку на использование энергосберегающих технологий и ВИЭ. В Устье Темзы к открытию Игр планируется запустить крупнейший в Великобритании, да и во всей Европе ветропарк London Array мощностью свыше 1 ГВт. Напротив, в концепции олимпиады в Сочи заложены «антизеленые» принципы: превращение заповедника в стройку, строительство тепловых электростанций, спорные решения «мусорной проблемы», еще большее уплотнение г. Сочи. Практически ни одна из инициатив по использованию ВИЭ и современных решений по энергосбережению не находят поддержки и разбиваются о стену коррупционных задвижек.
И все-таки, энергетике на основе ВИЭ быть и в России. Она уже развивается и рост постепенно ускоряется. Тому есть объективные причины:

Потенциал ресурсов. В России самые большие в мире ресурсы ВИЭ, причем практически всех видов. В некоторых точках сочетание местных условий способствует практически одномоментной окупаемости проектов на основе ВИЭ. Например, проекты по энергообеспечению удаленных от инфраструктуры объектов, биогазовые кластеры, производство древесных пеллет, нулевые дома и т.д. Указанные направления ВИЭ уже успешно развиваются даже без специальных мер поддержки ВИЭ от государства.

Поддержка. Развитие энергетики на основе ВИЭ в РФ до последнего времени шло «снизу», силами инженеров, любителей, небольших творческих коллективов и энтузиастов. В последние годы появляется и мощная поддержка по развитию ВИЭ и «сверху» - Русгидро, Ренова, Роснано, Ростехнологии и Росатом постепенно включаются в процесс создания рынка ВИЭ в РФ.

Упадок инфраструктуры. Новым собственникам, застройщикам и девелоперам все сложнее и дороже согласовать подключение к энергосетям, газопроводу. Есть существенные ограничения по располагаемым мощностям. Энергосетевому хозяйству страны требуется масштабная модернизация, которая, по-видимому, пойдет по пути развития децентрализованной генерации.

Развитие территории и новое строительство. На территориях, где нет готовой инфраструктуры (электросетей, газопроводов) приходится искать альтернативные пути энергообеспечения новых объектов инфраструктуры. В наиболее энергодефицитных регионах выбор все чаще делается в пользу собственной генерации на основе ВИЭ. Топить бензином и дизтопливом с каждым днем становится все дороже.

Рост тарифов. Важнейшим драйвером роста генерации на основе ВИЭ становится последовательное доведение внутрироссийских цен на газ и электроэнергию до западного уровня. Полный переход к равнодоходным с европейскими газовым тарифам, либерализация рынка электроэнергетики приведут к тому, что без использования генерации на основе ВИЭ и энергосбережения российским потребителям будет сложно обеспечить свою конкурентоспособность.

альтернативная этнергия, биотопливо, биогаз, энергия ветра, энергия солнца, энергосбережение

Делая ставку на строительство крупных электростанций, мы вынуждены строить протяженные сети для передачи энергии. Их стоимость, обслуживание, а также потери при передаче приводят к увеличению тарифа в 4-5 раз, по сравнению с себестоимостью произведённой энергии.

Владимир Михайлов, член экспертного совета по разграничению полномочий при Президенте России

Есть люди, утверждающие, что малая энергетика - это хорошо.

Есть другие, которые утверждают, что малая энергетика - "ересь", и единственным правильным вариантом является энергетика большая. Мол, присутствует эффект масштаба, вследствие чего "большая электроэнергия" дешевле.

Оглянитесь вокруг. И на Западе, и на Востоке активно строятся малые электростанции, как в дополнение к большим станциям, так и вместо них.

Малые электростанции сегодня немногим уступают "старшему брату" в КПД, но солидно выигрывают в гибкости работы, а также быстроте строительства и ввода в эксплуатацию.

Собственно, в этой публикации я покажу, что сегодня "большая" энергетика вряд ли способна единолично справиться с задачей надежного и недорогого электроснабжения потребителей России. В том числе, по специфическим причинам, напрямую с энергетикой не связанным.

69 000 руб. за кВт - стоимость Сочинской ТЭЦ…

Как известно, чем крупнее стройка, тем дешевле ее удельная стоимость. Например, затраты на создание малых электростанций с утилизацией тепла составляют около 1000 долларов за киловатт установленной электрической мощности. Стоимость крупных станций должна укладываться в 600-900 долл./кВт.

А теперь, как обстоит дело в России.

    Удельная стоимость Сочинской ТЭЦ (2004 год) составила около 2460 долларов за киловатт.

    Установленная электрическая мощность: 79 МВт, тепловая: 25 Гкал/час.

    Объем инвестиций: 5,47 млрд. руб.

    Строительство проводилось в рамках федеральной целевой программы "Юг России"

    Инвестиционная программа РАО "ЕЭС России" (дата публикации - осень 2006 года): планирует за пять лет потратить 2,1 трлн. (2 100 000 000 000) рублей на строительство электростанций и сетей. Это самая дорогостоящая в России программа. Она превышает все инвестиционные расходы федерального бюджета вместе с инвестиционным фондом на следующий год (807 млрд. рублей). Она больше, чем Стабилизационный фонд (2,05 трлн. рублей).

    На строительство одного киловатта мощности в среднем порядка 1100 долларов.

    Бывший замминистра энергетики, экс-председатель совета директоров РАО "ЕЭС" Виктор Кудрявый; "Инвестиционная программа РАО "ЕЭС" завышена на 600-650 млрд. рублей".

    За новую диспетчерскую систему "ЕЭС" заплатило немецкой Siemens около 80 млн. евро, хотя, по мнению эксперта Центра изучения региональных проблем Игоря Технарева, аналогичная продукция уже разработана отечественными специалистами и стоит от 1 до 5 млн. евро. Еще почти $7 млн. РАО "ЕЭС" отдала Microsoft за легализацию корпоративного программного обеспечения холдинга. Как пошутил один из собеседников "Ко", такого себе не может позволить даже администрация президента.

Вывод: стоимость строительства электростанций искусственно завышается РАО "ЕЭС" в два-четыре раза. Понятно, что деньги идут в "нужный карман". Ну, а берутся они из бюджета (читай, наших налогов) или закладываются в стоимость тарифов и платы за присоединение.

Борис Грызлов: «Руководство РАО «ЕЭС России» уделяет больше внимания выплате бонусов своим сотрудникам, чем развитию отрасли»

Утверждение, что Управление РАО "ЕЭС России" занимается благополучием не компании, а самого Управления очевидно многим:

  1. Председатель Государственной Думы Борис Грызлов (11 октября 2006): "К сожалению, мы должны констатировать, что те мероприятия, которые были проведены РАО "ЕЭС России" до настоящего времени, не привели к устранению опасности серьезных аварий и опасности существенного повышения тарифов для населения. Звучат заявления о предстоящих зимой отключениях электроэнергии в ряде регионов. К каким последствиям могут привести такие отключения, например, во время морозов, нетрудно представить - речь идет о здоровье и даже о жизни наших граждан.
  2. Руководитель Института проблем глобализации Михаил Делягин: "Реформа электроэнергетики отвлекает все силы РАО "ЕЭС" и многих сопряженных бизнес-структур на передел активов, "распил" финансовых потоков и отвод их в свой карман. Все остальные вопросы остались на периферии внимания руководства РАО "ЕЭС" - не потому, что оно плохое, а потому что так была задумана и устроена реформа".

А Управление и не стесняется говорить о катастрофическом состоянии энергетики, в котором РАО "ЕЭС России", естественно, не виновато:

  1. Член правления РАО "ЕЭС России" Юрий Удальцов: "В 2004 году РАО "ЕЭС России" удовлетворило только 32% всех заявок на подключение. В 2005 году этот показатель снизился до 21%. Предполагается, что количество, подключенных к электроснабжению, будет и дальше падать: в 2006 году до 16%, а в 2007-м до 10%".
  2. Анатолий Борисович Чубайс: "Физические возможности энергосистемы страны подходят к концу, о чем предупреждали несколько лет назад".

Вывод: в ситуации, когда

  • электроэнергетика страны рушится
  • те, кто должен строить, "пилят" финансовые потоки

говорить об отсутствии альтернативы "большой" энергетике, мягко говоря, неразумно.

Энергоавария на подстанции "Чагино" затронула Москву и четыре области

К сожалению, говорить о надежности электроснабжения сегодня не приходится. Изношенность оборудования электроэнергетики в районе 70-80%.

Многие помнят аварию на подстанции "Чагино", после которой по европейской части России прокатились веерные отключения. Напомню лишь некоторые последствия этого события:

  1. В результате многочисленных аварий на подстанциях отключилось электричество в большей части районов столицы России. На юге Москвы - в районе Капотни, Марьино, Бирюлево, Чертаново около 11:00 выключилось электричество. На Ленинском проспекте, Рязанском шоссе, шоссе Энтузиастов и в районе Ордынки также не было электричества. Без электроэнергии остались Орехово-Борисово, Люберцы, Новые Черемушки, Жулебино, Братеево, Перово, Люблино...
  2. Отключилось электричество в 25 городах Подмосковья, в Подольске, в Тульской области, Калужской области. Без электричества остались жилые дома и промышленные объекты. На некоторых особо опасных производствах произошли аварии.
  3. Не работали системы кондиционирования, отключилось электричество в больницах и моргах. Встал городской транспорт. На улицах выключились светофоры - на дорогах образовались пробки. В ряде районов Москвы жители остались без воды. На насосные станции не подавалось электричество, соответственно, подача воды остановилась. В городе закрылись ларьки и магазины, так как даже в супермаркетах "тают" холодильники.
  4. Прямые потери Петелинской птицефабрики 14 430 000 руб. (422 000 евро) - погибло 278,5 тыс. голов птицы.
  5. Завод URSA едва не лишился основного оборудования - стекловаренной печи. Однако производственные и финансовые потери все-таки были: завод недовыпустил 263 тонны стекловолокна. Простой производства составил 53 часа, убытки от которого превысили 150 тысяч евро.

Московская авария 25 мая 2005 года - самая известная, но она одна из сотен малых и крупных аварий, происходящих в России ежегодно.

На сайте «Электроснабжение регионов России» в разделе "Надежность традиционного электроснабжения" Вы можете посмотреть подбор материалов из прессы об авариях, энергодефиците в Вашем регионе.

Подборка не является полным собранием фактов, но некоторое представление о ситуации с надежностью электроснабжения получить можно.

Кстати, одним из самых громких стало заявление Председателя Правления РАО "ЕЭС России" Анатолия Чубайса о списке из 16 регионов России, которые зимой 2006-2007 годов могут испытать ограничения в потреблении электроэнергии.

Это Архангельская, Вологодская, Дагестанская, Карельская, Коми, Кубанская, Ленинградская (включая Санкт-Петербург), Московская, Нижегородская, Пермская, Свердловская, Саратовская, Тывинская, Тюменская, Ульяновская и Челябинская энергосистемы.

В прошлом году в зоне риска были только Московская, Ленинградская и Тюменская энергосистемы…

Вывод: аварии и заявления Чубайса А.Б. сообщают нам о невысокой надежности традиционного электроснабжения. К сожалению, ждем новых аварий…

Немного о малой энергетике

Малая энергетика имеет свои плюсы

Во-первых , огромное преимущество быстрого ввода объектов (меньшие капитальные затраты, меньшие сроки производства оборудования и строительства "коробки", меньшие объемы топлива, много меньшие затраты на ЛЭП)

Это позволит "приглушить" очень значительный энергодефицит до ввода крупных энергообъектов

Во-вторых , конкуренция всегда благотворно сказывается на качестве и стоимости услуг

Надеюсь, успехи малой энергетика подтолкнут к более активному повышению эффективности "большой" энергетики

В-третьих , малые электростанции требуют меньше места и не ведут к высокой концентрации вредных выбросов

Этот факт можно и нужно использовать в процессе обеспечения электроэнергией и теплом нашу будущую зимнюю Жемчужину, столицу Олимпийских Игр 2014 года - город Сочи

В связи с тем, что малая газовая энергетика - отрасль достаточно молодая, есть и проблемы , наличие которых нужно признавать и решать:

Во-первых , отсутствие законодательной базы применительно к малым электростанциям (для автономных теплогенерирующих источников хоть что-то, но есть)

Во-вторых , фактическая невозможность продавать излишки электроэнергии в Сеть

В-третьих , значительные затруднения при получении топлива (в подавляющем числе случаев природный газ)

Вывод: у малой энергетики в России значительный потенциал, для полного раскрытия которого понадобится время

Итоги

Я уверен, что в нашей стране должны сосуществовать энергетики разных "весовых" категорий. Каждая имеет свои сильные и слабые стороны.

И только в кооперации можно получить эффективную Энергетику.

Источник информации —

Моральный и физический износ существующих генерирующих мощностей «большой энергетики» находится на критическом уровне, а новые много миллиардные инвестиции, в условиях кризиса невозможны, выход в пересмотре развития энергетической концепции, в сторону обеспечения энергобережливости и энергоэффективности производств даже в тех зонах, где большая энергетика до сего времени рассматривалась как безальтернативная. Отсутствие инвестиций в сетевые мощности, привело к введению платы за технологическое присоединение к сетям. Для потребителя это значительные, а порой и «неподъемные» суммы. Более того, есть регионы, где даже за плату получить мощность невозможно - ее просто нет.

В этом случае оптимальное (а порой, и единственное) решение - малая энергетика. Понятие "малая энергетика" обычно включает в себя расположенные в непосредственной близости от потребителя или группы потребителей, энергогенерирующие установки мощностью до 25 МВт.

К объектам малой энергетики относятся малые ГЭС и ТЭЦ, биогазовые, ветроэнергетические и солнечные установки, газовые и дизельные электростанции. Преимущества таких объектов это высокая автономность и эффективность, экологичность, существенно меньше инвестиций и малые сроки создания, что позволяет потребителю не зависеть от централизованного энергоснабжения и его состояния и использовать оптимальные для данных условий источники и средства производства энергии. Строительство когенерационной ТЭЦ мощностью 1МВт «под ключ» стоит в среднем 1 000 000- 1 200 000 евро.

Поэтому сегодня высок интерес к малой энергетике, как со стороны владельцев промышленных предприятий, так и региональных и муниципальных руководителей. Потребность в объектах малой энергетики, и реконструкции существующих настолько высока, что нет практически ни одного населенного пункта, промпредприятия или района, где не требовалась бы новая генерация.

В России наибольшее распространение получили газовые и дизельные теплоэлектростанции, работающие по принципу когенерации .

Когенерация - это технология комбинированной выработки двух форм полезной энергии (электрической и тепловой) из одного первичного источника топлива. Только при оптимальном использовании обоих форм энергии достигается наибольший экономический эффект когенерации в малой энергетике.

Оценка среднего коэффициент использования топлива при раздельном производстве электрической и тепловой энергии в большой энергетике:

При этом потери при передаче электроэнергии на большие расстояния могут достигать 30%, а тепловой, в случае изношенных сетей - 70%.

Оценка среднего коэффициент использования топлива когенерационного цикла:

Следует заметить, что при этом когенерационная установка отличается значительно меньшими эксплуатационными расходами (одна единица основного оборудования производит оба вида энергии в одном цикле), простотой в обслуживании, легкостью и малыми затратами на монтаж, малыми сроками доставки и производства.

Наиболее рентабельны проекты строительства энергоцентров при промышленных предприятиях, имеющих двух-трех сменный режим работы. В этом случае, коэффициент загрузки оборудования будет близок к 90%, что значительно снизит сроки окупаемости проекта (3-5 лет).

Выгодно принимать участие в технической реконструкции существующих объектов малой энергетики, используя при этом новое оборудование и современные технологии. Такие объекты, как правило, находятся в районе с развитой инфраструктурой и проблем со сбытом тепла и электричества не возникает.

Обеспечивать энергоносителями объекты ЖКХ выгодно, в первую очередь, с политической точки зрения, экономика, в подобных проектах, на втором плане. Хотя семилетняя окупаемость проектов тоже является привлекательной.

Малая энергетика требует благоприятного инвестиционного климата, должной государственной (как региональной, так и федеральной) поддержки, решения вопросов газификации региона или отдельно взятого предприятия. На первом этапе это и технические вопросы, и лимиты на газ. На втором этапе, выбирается техническое решение, подбирается оборудование, проектная организация, схема финансирования, генеральный подрядчик.

Как правило, в регионах, нет специалистов способных возглавить процесс организации строительства энергоцентров от начального этапа до ввода его в эксплуатацию. И как следствие, на каждом этапе Заказчика ждут подводные камни и недобросовестные консультанты. В итоге замедляются сроки строительства, теряется финансовая привлекательность проекта.

ООО «ТрансДорСтрой» сегодня решает весь комплекс вопросов связанных со строительством объектов малой энергетики от финансирования строительства, газификации, получения всех необходимых разрешений и согласований, до сдачи объекта под ключ и последующей эксплуатации.

География уже выполненных проектов обширна это: Курская область, Новосибирская область, Алтайский край, Республика Алтай, Московская область, республика Коми и т.д.

Результат работы с нами это значительный экономический эффект, от общего увеличения эффективности и стабильности функционирования энергосистемы за счет снижения потерь и увеличения КПД, экономии природных ресурсов, улучшения экологической обстановки.

Энерге́тика - область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

Электроэнергетика

Электроэнергетика - это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на традиционную и нетрадиционную .

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная электрическая мощность очень часто превышает 1000 Мвт . Традиционная электроэнергетика делится на несколько направлений .

Тепловая энергетика

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС ), использующих для этого химическую энергию органического топлива. Они делятся на:

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа - 18 %, ещё около 3 % - за счет сжигания биомасс, нефть используется для 0,2 %. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира

Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов - газа . Очень велика доля теплоэнергетики в Китае , Австралии , Мексике .

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС ), использующих для этого энергию водного потока .

ГЭС преобладает в ряде стран - в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС ), использующих для этого энергию управляемой цепной ядерной реакции , чаще всего урана и плутония .

По доле АЭС в выработке электроэнергии первенствует Франция , около 70 %. Преобладает она также в Бельгии , Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США , Франция и Япония .

Нетрадиционная электроэнергетика

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность . Направления нетрадиционной энергетики :

  • Установки на топливных элементах

Также можно выделить важное из-за своей массовости понятие - малая энергетика , этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика , распределённая энергетика , автономная энергетика и др . Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России - примерно 96 % ), газопоршневые электростанции , газотурбинные установки малой мощности на дизельном и газовом топливе .

Электрические сети

Электрическая сеть - совокупность подстанций , распределительных устройств и соединяющих их линий электропередачи , предназначенная для передачи и распределения электрической энергии . Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения , тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми , то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность , под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными .

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической , но и тепловой энергии . Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами . Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику ) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90 °C . Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1-3 МПа . В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной ;
  • тепловой сети , например из трубопроводов горячей воды или пара ;
  • теплоприёмника, например батареи водяного отопления .

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы , здания , жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ );
  • Котельные , которые делятся на:
    • Водогрейные;
    • Паровые.

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал /ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:

  • Малые котельные;
  • Электрическое, которое делится на:
    • Прямое;
    • Аккумуляционное;

Тепловые сети

Тепловая сеть - это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

Газообразное

природный газ , искусственным:

  • Доменный газ;
  • Продукты перегонки нефти ;
  • Газ подземной газификации;

Жидкое

Естественным топливом является нефть , искусственным называют продукты его перегонки:

Твёрдое

Естественным топливом являются:

  • Ископаемое топливо :
  • Растительное топливо:
    • Древесные отходы;
    • Топливные брикеты ;

Искусственным твёрдым топливом являются:

Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана , который добывают:

  • В шахтах (Франция , Нигер , ЮАР);
  • В открытых карьерах (Австралия , Намибия);
  • Способом подземного выщелачивания (Казахстан , США , Канада , Россия).

Энергетические системы

Энергетическая система (энергосистема) - в общем смысле совокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения , угольной промышленности , ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему , в масштабах нескольких районов - в объединённые энергосистемы . Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом , оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов .

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой . В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой , при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы .