Домой / Агробизнес / Обоснование способа охлаждения и выбор системы кцкп. Выбор и обоснование системы охлаждения и схемы холодильной установки. Задание для самостоятельной работы

Обоснование способа охлаждения и выбор системы кцкп. Выбор и обоснование системы охлаждения и схемы холодильной установки. Задание для самостоятельной работы

Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет

информатики и радиоэлектроники»

Кафедра РЭС

РЕФЕРАТ

на тему:

«Выбор способа охлаждения на ранней стадии проектирования»

Минск, 2008

Способ охлаждения во многом определяет конструкцию, поэтому уже на ранней стадии проектирования (техническое предложение и эскизный проект). Необходимо выбрать способ охлаждения и только после этого приступить к разработке. На ранней стадии в распоряжении конструктора имеется техническое задание, в котором заключены сведенья о характерах теплового режима, для выбора способа охлаждения требуются следующие данные:

Мощность рассеиваемая в блок;

Диапазон возможного изменения температуры окружающей среды, ;

Пределы изменения давления окружающей среды, ;

Время непрерывной работы;

Температура наименее теплостойкого элемента;

Прежде чем приступить к расчету, необходимо рассчитать коэффициент заполнения по объему:

где - объем i-ого элемента;

Число элементов;

Объем занимаемый электронной системой.

Коэффициент заполнения по объему характеризует степень полезного использования объема он, как правило, задается в техническом задании.

При расчете время непрерывной работы должно быть длительным, так как кратковременного или периодического режимов описанный способ применить нельзя. На тепловые характеристики влияние оказывает давление, особенно пониженное. Площадь корпуса электронной системы и коэффициент заполнения по объему используются для определения условной величины поверхности теплообмена, который определяется:

где - геометрические размеры корпуса аппарата.

В том случае если способ охлаждения выбирается для большого элемента, то величина поверхности теплообмена определяется из соответствующих чертежей по геометрическим размерам поверхности находящемся в непосредственном контакте с теплоносителем. За основной показатель, определяющий области целесообразного применения способа охлаждения принимается величина плотности теплового потока проходящего через поверхность теплообмена. Эта величина определяется следующим образом:

где - коэффициент, учитывающий давление воздуха. Определяется по таблицам (например Дульник Г.М. “Тепломассаобмен в РЭА”).

При нормальном атмосферном давлении.

Вторым показателем может служить минимально допустимый перегрев элемента, который определяется следующим образом:

где - допустимая температура корпуса наименее теплостойкого элемента, т.е. это, есть минимальное значение температуры элемента, а для больших элементов, это допустимая температура охлаждаемой поверхности.

Температура среды; для естественного воздушного охлаждения, т.е. соответствует максимальной температуре которая задается в техническом задании; для принудительного воздушного охлаждения, т.е. соответствует температуре воздуха (жидкости) на входе в электронную систему.

На рисунке 1 показаны области целесообразного применения различных способов охлаждения.

Верхние кривые соответствуют, обычно их применяют для выбора способа охлаждения больших элементов, нижние кривые – блоков, стоек и т.д.

Здесь 1 – естественное воздушное охлаждение; 2 – возможно применение естественного и принудительного воздушного охлаждения; 3 – принудительное воздушное охлаждение; 4 – принудительное воздушное и жидкостное охлаждение; 5 – принудительное жидкостное охлаждение; 6 – принудительное жидкостное и естественное испарительное охлаждение; 7 – принудительное жидкостное принудительное и естественное испарительное охлаждение; 8 – принудительное и естественное испарительное охлаждение; 9 – принудительное испарительное охлаждение.

Наиболее полно задача выбора способа охлаждения рассмотрено для области 1 и 2.

Рассмотрим, например порядок выбора способа охлаждения, когда показатели и попадают в область 2, для этой цели построены дополнительные графики (рис. 2-5).

Пример: электронная система с показателями, при естественном воздушном охлаждении в герметичном корпусе вероятность обеспечения теплового режима, а при внутреннем перемешивании воздуха с удельным расходом, вероятность обеспечения.

На рис. 5 в отличие от предыдущих введен еще один показатель – массовый расход воздуха на единицу рассеиваемой электронной системы мощности. Расход воздуха на охлаждение должен быть задан в техническом задании или можно пользоваться принятыми приближенными оценками:

При рациональном конструировании тепловой режим электронной системы можно обеспечить при удельном расходе воздуха

В стационарных электронных системах, где нет столь жесткого ограничения по габаритам, массе и энергопотреблению.

Увеличение расхода воздуха имеет смысл в том случае, если это приводит к увеличению надежности электронной системы.

Рассмотрим более подробно смысл вероятностных оценок приведенных на рис. 2-5. При проектировании электронной системы необходимо обеспечить выполнение множества различных требований, важнейшими из которых являются:

Электротехнические требования;

Высокая надежность (наработка на отказ, безотказность работы);

Уменьшение массы и объема;

Создание нормального теплового режима;

Защита от ударов и вибраций, акустических шумов;

Снижение стоимости;

Улучшение технологичности и т.д.

С учетом сказанного процесс проектирования становится трудноформулируемой задачей.

При выборе способа охлаждения следует руководствоваться следующими правилами:

Если точка с заданными параметрами на одном из графиков (рис. 2-5) попадает в область вероятности, то можно остановиться на данном способе охлаждения.

Если, то можно выбрать этот способ охлаждения, однако при конструировании обеспеченью теплового режима необходимо уделить тем больше внимание, чем меньше вероятность;

Если, то не рекомендуется выбирать этот способ охлаждения в противном случае необходимо уделить особое внимание обеспечению теплового режима, что предполагает возможность увеличения габаритов, массы и других конструктивных решений;

Если, то обеспечить нормальный тепловой режим удается крайне редко, а при - практически невозможно.

Пример: предположим, что по техническому заданию необходимо определить способ охлаждения негерметичной электронной системы со следующими исходными данными: , режим длительный, давление вне блока нормальное.

Предположим, что нам необходимо обеспечить нормальный тепловой ражим с вероятностью. Воспользуемся графиками рис. 5 из которых определяем, что откуда, следовательно, если руководствоваться рекомендациями, изложенными выше, то можно остановиться на этом способе охлаждения.

Известно, что понижение давления способствует ухудшению условий теплообмена, поскольку температура элементов начинает увеличиваться, хотя мощность, рассеиваемая в блоке, остается неизменной. Поэтому при расчете необходимо учитывать коэффициент, который выбирается из таблицы (справочники). Часто для электронных систем используется наддув корпусов герметичных блоков.

Задача: предположим, что необходимо выбрать способ охлаждения блока электронной системы, работающего в длительном режиме в негерметичном отсеке самолета при давлении. Исходные данные блока: .

Из таблицы определим, что, тогда получим:

По кривым (рис. 1) определяем, что параметры блока лежат на границе областей 2 и 3, следовательно целесообразно выбрать принудительное воздушное охлаждение. Однако проверим возможность применения естественного воздушного охлаждения, для этого воспользуемся графиками 2-5. По графику 2 при проверим возможность применения герметичного корпуса без наддува и с наддувом. Из графика видно, что вероятность составляет около. Исходя из рекомендаций, этот способ охлаждения выбирать, не следует. Применение наддува не приведет к значительному улучшению поскольку (таблица) и вероятность около.

Проверив внутреннее перемешивание со скоростями и с учетом, которые соответственно и можно убедится, что вероятность обеспечения теплового режима несколько увеличится и соответственно и следовательно данный способ охлаждения может быть использован, однако для обеспечения необходимой скорости внутреннего перемешивания воздуха может потребоваться наддув. Именно поэтому необходимо рассчитать режимы вентиляторов для внутреннего перемешивания воздуха в блоке при пониженном давлении.

По рис. 3 при проверим возможность применения наружного обдува, тогда вероятность, следовательно, этот способ охлаждения может быть принят.

Если использовать охлаждения блока продувом холодного воздуха, то из рис. 5 следует, что при удельном расходе воздуха, то тепловой режим блока может быть обеспечен с вероятностью.

Если же использовать перфорированный корпус, то из рис. 4 можно получить, что вероятность блока.

Общие выводы

1. Если по условию эксплуатации блок должен быть выполнен в герметичном корпусе, то необходимо выбрать принудительное воздушное охлаждение с внутренним перемешиванием воздуха либо с наружным обдувом. Если осуществить принудительное охлаждение не возможно, то для осуществления естественного охлаждения при наличии обдува необходимо или увеличить геометрические размеры блока или снизить рассеиваемую мощность или понизить температуру окружающей среды.

2. Если по условиям эксплуатации блок может быть выполнен не в герметичном корпусе, то с большой вероятностью можно обеспечить нормальный тепловой режим при принудительном охлаждении с продувом холодного воздуха. Этот способ является наиболее предпочтительным.

ЛИТЕРАТУРА

1. Достанко А.П., Пикуль М.И., Хмыль А.А. Технология производства ЭВМ. - Мн.: Вышэйшая школа, 2004.

2. Технология поверхностного монтажа: Учеб. пособие / Кундас С.П., Достанко А.П., Ануфриев Л.П. и др. – Мн.: «Армита - Маркетинг, Менеджмент», 2000.

3. Технология радиоэлектронных устройств и автоматизация производства: Учебник/ А.П. Достанко, В.Л.Ланин, А.А. Хмыль, Л.П. Ануфриев; Под общ. ред. А.П. Достанко. – Мн.: Выш. шк., 2002

4. Гуськов Г.Я., Блинов Г.А., Газаров А.А. Монтаж микроэлектронной аппаратуры М.:Радио и связь, 2005.-176с.

5. Гибкие автоматизированные производства. Управление технологичностью РЭА /А.М.Войчинский, Н.И.Диденко, В.П.Лузин.-М.: Радио и связь, 2007.-272 с.

Данная методика является лишь началом гармонизации общей методики, изложенной во всех частях EN 15316, по определению суммарного энергопотребления конечными потребителями (система отопления и горячего водоснабжения), внешними сетями и источниками генерирования энергии (котельной установкой, биоустановкой, солнечными коллекторами, тепловым насосом, когенерационной установкой и др.). Приведенная европейская норма включена в перечень усовершенствований украинской нормативно-правовой базы по энергоэффективности в строительной отрасли «Отраслевой программы повышения энергоэффективности в строительстве на 2010-2014 гг.».

Обращаем внимание, что данная методика является количественным выражением влияющих факторов энергоэффективности систем отопления, изложенных в ДСТУ Б А.2.28:2010, раздел «Энергоэффективность», в составе проектной документации объектов. Однако данная методика пока не является полной. Она не охватывает дополнительных затрат энергии системы отопления — насосом в различных системах отопления, автоматикой и приводами клапанов — изложенных в EN 1531623:2007 «Heating systems in buildings. Method for calculation of system energy requirements and system efficiencies. Part 23: Space heating distribution systems».

Уравнение (1) методики детализируют влияющие факторы различных систем отопления (водяная, электрическая, воздушная, инфракрасная) во всем многообразии их современного технического оснащения. Но пока оно не охватывает новейшего энергоэффективного оборудования для систем отопления, такого как комбинированные клапаны для двухтрубных систем (Danfoss ABQM), термобалансировочные клапаны для однотрубных систем (Danfoss ABQT), которые превзошли на сегодняшний день показатели энергоэффективности технических решений, включенных в уравнение (1).

К сожалению, методика, тем более межгосударственная, разрабатываемая и утверждаемая годами, не поспевает за научно-техническим прогрессом. Также методика охватывает большинство применяемых сегодня технических решений при отоплении зданий и является существенным развитием действующих на Украине нормативных методик, изложенных в п. 6 приложения 12 изм. №1:1996 к СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование», а также в п. 5.2 ДСТУН Б А.2.25:2007 «Руководство по разработке и составлению энергетического паспорта зданий».

В методике приведены ссылки на прДСТУН Б В.1.1ХХХ:201Х «Строительная климатология». Данный стандарт выйдет в 2011 г. Также в методике есть ссылки на норматив EN 14336:2004 «Heating systems in buildings. Installation and commissioning of water based heating systems», который необходимо использовать при обязательной наладке систем отопления. Требования этой европейской нормы относительно испытания трубопроводов под давлением уже изложены в ДСТУ Б В.2.544:2010 «Проектирование систем отопления зданий с тепловыми насосами», который модифицирован к EN 15450:2007. С методами гидравлической наладки систем отопления можно ознакомиться в книге В.В. Пыркова «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2010 г., а также в обучающих фильмах, выложенных на сайте компании Danfoss (www.danfoss.com)*.

Требования к EN 14336:2004 запорно-регулирующей арматуре для наладки состоят в следующем:

❏ перед проектированием системы отопления, проектировщик обязан определиться с методом и приборами для наладки системы и применить запорно-регулирующую (в данном контексте — балансировочную) арматуру, позволяющую реализовать выбранный метод;

❏ комплектация и монтаж системы должны полностью отвечать проекту.

В конце методики приведен пример сопоставления энергопотребления системой электрического и водяного отопления. Пример является реализацией требований п. 5.24 изм. №1:2009 к ДБН В.2.215-2005 «Жилые здания», в соответствии с которыми применение систем электроотопления, за исключением систем электроотопления от возобновляемых источников энергии, требует технического и экономического обоснования. В примере есть ссылки на новую редакцию прДБН В.2.524:201Х «Электрические кабельные системы отопления», с которой вы ознакомитесь в 2011 г.

Обращаем внимание, что в соответствии с требованиями п. 5.24 и 5.25 изм. №1:2009 к ДБН В.2.215-2005 применение местной котельной и квартирных газовых генераторов также требует технического и экономического обоснования. Эти требования адаптированы к положению ст. 6 Директивы 2010/31/ЕС «Energy Performance of Buildings», а также проекта закона Украины «Об энергетической эффективности зданий», в соответствии с которыми местные котельные и квартирные газовые генераторы не входят в перечень альтернативных источников энергии при теплообеспечении зданий. Для осуществления технического и экономического обоснования указанных технических решений необходимо гармонизировать наши нормы к соответствующим частям EN 15316.

Методика

1. Техническое и экономическое обоснование выбора системы отопления здания осуществляют путем сравнения вариантов проектных решений по энергопотреблению.

2. Комплексное определение энергоэффективности проектного решения с учетом энергоэффективности источника энергии, внешних энергопередающих сетей и систем теплопотребления здания рекомендуется осуществлять по методике в EN 15316 (все части).

3. Упрощенное сравнение вариантов проектных решений — лишь по энергоэффективности распределения тепловой энергии системой отопления в здании без учета дополнительных энергозатрат на работу электрооборудования водяной системы отопления (насоса, электроники, электроприводов и др.) — рекомендуется осуществлять по методике в EN 1531621 .

3.1. Варианты проектных решений сравнивают по расчетному расходу тепловой энергии за отопительный период, определяемому по сумме ежемесячных расчетных расходов.

3.2. Для здания с различными внутренними температурными условиями или с конструктивно отличающимися системами отопления сравнение осуществляют соответственно по каждой температурной зоне здания или по зоне действия системы. Здание разделяют на температурные зоны при разности температуры воздуха в отапливаемых помещениях более чем на 3 °C (кроме квартир).

3.3. Расчетный расход тепловой энергии системой отопления здания Qem, ls, год за отопительный период в зависимости от степени детализации влияющих факторов энергоэффективности системы — применяемого оборудования, схемного решения, средств регулирования, характеристик отапливаемого помещения — определяют по уравнению (1):

Здесь fhudr — коэффициент, учитывающий выполнение гидравлической балансировки системы; fim — коэффициент, учитывающий применение периодического теплового режима помещения; frad — коэффициент, учитывающий влияние лучистого теплообмена; ηem — обобщающий коэффициент, учитывающий условия теплоотдачи системы:

где ηstr — коэффициент, учитывающий влияние градиента (стратификации) температуры воздуха в помещении, для некоторых систем — среднее арифметическое коэффициентов ηstr1 (учитывает температуру теплоносителя) и ηstr2 (учитывает условия установки отопительного прибора); ηctr — коэффициент, учитывающий применяемый вид регулирования температуры воздуха в помещении; ηemb — коэффициент, учитывающий теплопоступления в отапливаемое помещение от встроенных нагревательных элементов (для панельно-лучистых систем), для некоторых систем является среднеарифметическим коэффициентов ηemb1 (учитывает тип панельно-лучистой системы) и ηemb2 (учитывает теплоизоляцию панельно-лучистой системы к смежным помещениям).

Дальнейшие переменные в формуле (1): n — количество полных и неполных iх месяцев отопительного периода; Qk — общие теплопотери здания через его тепловую оболочку в iм месяце отопительного периода, кВт⋅ч (определяют в соответствии с 5.3 ДСТУН БА.2.25 , рассчитывая количество градусосуток для полных и неполных месяцев отопительного периода в соответствии с 5.5 прДСТУН Б В.1.1ХХХ:201Х ); Qвн — внутренние теплопоступления в iм месяце отопительного периода, кВт⋅год (определяют в соответствии с 5.8 ДСТУН Б А.2.25, принимая при этом количество градусо-суток полного месяца и неполного месяца в соответствии с табл. 3 прДСТУН Б В.1.1ХХХ:201Х; теплопоступления в других типах зданий определяют по справочным данным для соответствующего оборудования, технологического процесса и др.); Qs — теплопоступления через окна и другие свето-прозрачные ограждающие конструкции здания от суммарной (прямой и рассеянной) солнечной радиации при средних условияхоблачности в iм месяце отопительного периода, кВт⋅ч (определяют в соответствии с 5.9 ДСТУН Б А.2.25, принимая интенсивность солнечной радиации за полный месяц и определяя путем интерполирования за неполный месяц отопительного периода в соответствии с табл. 8 прДСТУН Б В.1.1ХХХ:201Х; количество суток неполного месяца определяют в соответствии с табл. 3 прДСТУН Б В.1.1ХХХ:201Х); v — коэффициент утилизации теплопритоков (учитывает способность здания воспринимать теплопритоки), для зданий без автоматического регулирования температуры воздуха в помещениях v = 0, для зданий с автоматическим обеспечением регулирования температуры воздуха в помещениях определяют в соответствии с рис. 1 по критерию тепловой инерции D, который определяют по уравнению (4) в ДБН В.2.631 .

4.3.1. Влияющие факторы энергоэффективности водяной системы отопления с отопительными приборами (радиатор, конвектор и др.) в помещениях высотой не более 4 м представлены в табл. 1 и 2. Коэффициент, учитывающий применение периодического теплового режима помещений, принимают fim = 0,97. Коэффициент, учитывающий влияние лучистого теплообмена, принимают frad = 1,0. Коэффициент, учитывающий гидравлическую наладку системы fhudr, принимают в соответствии с табл. 2.

4.3.2 . Влияющие факторы энергоэффективности панельно-лучистой водяной или электрической системы отопления с интегрированными в строительные конструкции нагревательными панелями в помещениях высотой не более 4 м представлены в табл. 3 и 4.

Коэффициент, учитывающий применение периодического теплового режима помещений, принимают fim = 0,98. Коэффициент, учитывающий влияние лучистого теплообмена, принимают frad = 1,0. Коэффициент, учитывающий гидравлическую наладку системы fhudr, принимают в соответствии с табл. 4.

4.3.3. Влияющие факторы энергоэффективности электрической системы отопления в помещениях высотой не более 4 м представлены в табл. 5. Коэффициент, учитывающий применение периодического теплового режима помещений, принимают fim = 0,97 (применяют в системах с интегрированной обратной связью). Коэффициент, учитывающий влияние лучистого теплообмена, принимают frad = 1,0.

4.3.4. Влияющие факторы энергоэффективности воздушного отопления нежилых зданий с помещениями высотой не более 4 м представлены в табл. 6.

4.3.5. Влияющие факторы энергоэффективности систем в помещениях высотой от 4 до 10 м (здания со значительным внутренним пространством) представлены в табл. 7. Параметры системы воздушного отопления:

❏ для промежуточной высоты помещения определяют как арифметическое среднее для систем с вертикальными или горизонтальными струями;

❏ для панельно-лучистой системы водяного отопления при высоте размещения не более 4 м принимают параметр ηem для высоты помещения 4 м; при этом ηrad = 1.

Величину коэффициента, учитывающего влияние лучистого теплообмена, принимают frad = 0,85. Данный коэффициент является усредненным для разных систем в помещениях со значительным внутренним пространством.

4.3.6. Влияющие факторы энергоэффективности систем в помещениях высотой более 10 м (здания со значительным внутренним пространством) представлены в табл. 7. Параметры системы воздушного отопления (ВО) при промежуточной высоте помещения определяют как арифметическое среднее для систем с горизонтальными или вертикальными струями.

Коэффициент, учитывающий влияние лучистого теплообмена, принимают frad = 0,85. Данный коэффициент является усредненным для разных систем в помещениях со значительным внутренним пространством.

4.4. Пример

4.4.1. Условие: в здании с помещениями высотой до 4 м сравнить электрическую кабельную систему отопления прямого действия (ЕКС ОПД) с радиаторной системой центрального водяного отопления.

4.4.2. Исходные данные: теплопотери здания за отопительный период, определенные как сумма ежемесячных теплопотерь, составляет 150 кВт⋅ч/год. Помещения с автоматическим регулированием температуры воздуха. Значения параметров ЕКС ОПД в соответствии с 4.3.2.:

❏ двухпозиционное регулирование (величина ηctr = 0,91);

❏ помещения с сухими полами (величнина ηstr = 1, ηemb1 = 0,96);

❏ нагревающие панели с минимальной теплоизоляцией в соответствии с 5.2.2 прДБН В.2.524 ηemb2 = 0,95;

❏ применение периодического теплового режима помещений fim = 0,98, влияние лучистого теплообмена frad = 1,0; \

❏ гидравлическая наладка системы fhudr не учитывается.

Значения параметров водяной системы отопления в соответствии с 4.3.1.:

❏ Прегулирование (2 K) терморегуляторами на приборах отопления ηctr = 0,93;

❏ температурный напор 60 K (при 90/70)ηstr1 = 0,93;

❏ отопительные приборы установлены у внешних стен с окнами без радиационной защиты ηstr2 = 0,83, ηemb = 1;

❏ применение периодического теплового режима fim = 0,98;

❏ влияние лучистого теплообмена (величина frad = 1,0);

❏ гидравлическая наладка системы автоматическими балансировочными клапанами для каждой квартиры (количество радиаторов в квартирах не превышает восьми) fhudr = 1,0.

4.4.3. Расчетный расход тепловой энергии за отопительный период ЕКС ОПД в соответствии с уравнениями (1) и (2):

Расчетный расход тепловой энергии за отопительный период водяной системой отопления в соответствии с уравнениями (1) и (2) без учета дополнительного расхода энергии на работу электрооборудования (насоса, электроники, электроприводов клапанов и пр.) а также без учета потерь энергии в источнике энергии и теплосетях:

4.4.4. Расчетный расход тепловой энергии за отопительный период ЕКС ОПД в сравнении с водяной системой центрального отопления меньше на:

что составляет:174,95 - 166,85 = 8,1 кВт.

  1. EN 1531621:2007. Heating systems in buildings. Method for calculation of system energy requirements and system efficiencies. Part 21.
  2. ДСТУ Б А.2.28:2010. Розділ «Енергоефективність» у складі проектної документації об’єктів.
  3. ДСТУН Б А.2.25:2007. Настанова з розроблення та складання енергетичного паспорта будівель.
  4. прДСТУН Б В.1.1ХХХ:201Х. Будівельна кліматологія. 5. ДБН В.2.631:2006. Теплова ізоляція будівель.
  5. EN ISO 13790:2008. Energy performance of buildings. Calculation of energy use for space heating and cooling.
  6. EN 14336:2004. Heating systems in buildings. Installation and commissioning of water based heating systems.
  7. прДБН В.2.524:201Х. Електрична кабельна система опалення.
>>> Также читайте по теме в журнале

Введение

1 Выбор расчетных параметров наружного и внутреннего воздуха

1.1 Расчетные параметры наружного воздуха

1.2 Расчетные параметры внутреннего воздуха

2 Составление тепловых и влажностных балансов помещения

2.1 Расчет теплопоступлений

2.1.1 Расчет теплопоступлений от людей

2.1.2 Расчет теплопоступлений от искусственного освещения

2.1.3 Расчет теплопоступлений через наружные световые проемы

и покрытия за счет солнечной радиации

2.1.4 Расчет теплопоступлений через внешние ограждения

2.1.5 Расчет теплопоступлений через остекленные проемы за счет

разности температур наружного и внутреннего воздуха

2.2 Расчет влаговыделений

2.3 Определение углового коэффициента луча процесса в помещении

3 Расчет системы кондиционирования воздуха

3.1 Выбор и обоснование типа систем кондиционирования воздуха

3.2 Выбор схем воздухораспределения. Определение допустимой и

рабочей разности температур

3.3 Определение производительности систем кондиционирования воздуха

3.4 Определение количества наружного воздуха

3.5 Построение схемы процессов кондиционирования воздуха

на Jd-диаграмме

3.5.1 Построение схемы процессов кондиционирования воздуха для

теплого периода года

3.5.2Построение схемы процессов кондиционирования воздуха для

холодного периода года

3.6 Определение потребности теплоты и холода в системах

кондиционирования воздуха

3.7 Выбор марки кондиционера и его компоновка

3.8 Расчеты и подбор элементов кондиционера

3.8.1 Расчет камеры орошения

3.8.2 Расчет воздухонагревателей

3.8.3 Подбор воздушных фильтров

3.8.4 Расчет аэродинамического сопротивления систем кондиционирования

3.9 Подбор вентилятора системы кондиционирования воздуха

3.10 Подбор насоса для камеры орошения

3.11 Расчет и подбор основного оборудования системы холодоснабжения

4 УНИРС – Расчет СКВ на ЭВМ

Приложение А - Jd-диаграмма. Теплый период года

Приложение Б -Jd-диаграмма. Холодный период года

Приложение Г – Схема холодоснабжения

Приложение Д – Спецификация

Приложение Е – План на отметке – 2.000

ВВЕДЕНИЕ

Кондиционирование воздуха – это автоматизированное поддержание в закрытых помещениях всех или отдельных параметров воздуха (температура, относительная влажность, чистота и скорость движения воздуха) с целью обеспечения оптимальных условий наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечение сохранности ценностей культуры.

Кондиционирование подразделяется на три класса:

1. Для обеспечения метеорологических условий, требуемых для технологического процесса при допускаемых отклонениях за пределами расчетных параметров наружного воздуха. В среднем 100 часов в год при круглосуточной работе или 70 часов в год при односменной работе в дневное время.

2. Для обеспечения оптимальных, санитарных или технологических норм при допускаемых отклонениях в среднем 250 часов в год при круглосуточной работе или 125 часов в год при односменной работе в дневное время.

3. Для обеспечения допустимых параметров, если они не могут быть обеспечены вентиляцией, в среднем 450 часов в год при круглосуточной работе или 315 часов в год при односменной работе в дневное время.

Нормативными документами установлены оптимальные и допустимые параметры воздуха.

Оптимальные параметры воздуха обеспечивают сохранение нормативного и функционального теплового состояния организма, ощущение теплового комфорта и предпосылки для высокого уровня работоспособности.

Допустимые параметры воздуха – это такое их сочетание, при котором не возникает повреждений или нарушения состояния здоровья, но может наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.

Допустимые условия, как правило, применяют в зданиях, оборудованных только системой вентиляции.

Оптимальные условия обеспечивают регулируемые системы кондиционирования (СКВ). Таким образом СКВ применяют для создания и поддержания оптимальных условий и чистоты воздуха в помещениях круглогодично.

Целью выполнения данной курсовой работы является закрепление теоретических знаний и приобретение практических навыков расчета, а также проектирование систем кондиционирования воздуха (СКВ).

В данной курсовой работе кондиционируемое помещение – это зрительный зал городского клуба на 500 мест в городе Одесса. Высота этого помещения – 6,3 м, площадь пола –289 м 2 , площадь чердачного покрытия –289 м 2 , объем помещения – 1820,7 м 3 .


1 ВЫБОР РАСЧЕТНЫХ ПАРАМЕТРОВ НАРУЖНОГО И ВНУТРЕННЕГО ВОЗДУХА

Расчетные параметры наружного воздуха.

Расчетные параметры наружного воздуха выбирают в зависимости от географического расположения объекта.

Таблица 1 – Расчетные параметры наружного воздуха.

Расчетные параметры внутреннего воздуха.

Расчетные параметры внутреннего воздуха выбирают в зависимости от назначения помещения и времени года.

Таблица 2 – Расчетные параметры внутреннего воздуха.


2 СОСТАВЛЕНИЕ ТЕПЛОВЫХ И ВЛАЖНОСТНЫХ БАЛАНСОВ ПОМЕЩЕНИЯ

Целью составления тепловых и влажностных балансов помещения является определение тепло- и влагоизбытков в помещении, а также углового коэффициента луча процесса, который используют при графоаналитическом методе расчета СКВ.

Балансы тепла и влаги составляют отдельно для теплого и холодного периодов года.

Источниками тепловыделений в помещении могут быть люди, искусственное освещение, солнечная радиация, пища, оборудование, а также теплопоступления через внутренние и внешние ограждения или через остекленные проемы за счет разности температур наружного и внутреннего воздуха.

2.1 Расчет теплопоступлений

2.1.1 Расчет теплопоступлений от людей

Тепловыделения в помещении от людей Q пол, Вт, определяют по формуле

Q пол = q пол ·n,(1)

где q пол – количество полного тепла, выделяемого одним человеком, Вт;

n – число людей, чел.

Q яв = q яв ·n,(2)

где q яв – количество явного тепла, выделяемого одним человеком, Вт;

n – число людей, чел.

Для холодного периода

Q пол = 120·285 = 34200 Вт

Q яв = 90·285 =25650 Вт

Для теплого периода

Q пол = 80·285 =22800 Вт

Q яв = 78·285 = 22230 Вт

2.1.2 Расчет теплопоступлений от искусственного освещения

Теплопоступления от искусственного освещения Q осв, Вт, определяют по формуле

Q осв = q осв ·Е·F,(3)

где Е – освещенность, лк;

F – площадь пола помещения, м 2 ;

q осв – удельные тепловыделения, Вт/(м 2 ·лк).

Q осв = 0,067·400·289 = 7745,2 Вт

2.1.3 Расчет теплопоступлений за счет солнечной радиации

Солнечная радиация Q р = 9400 Вт.

2.1.4 Расчет теплопоступлений через внешние ограждения

Теплопоступления через внешние ограждения, Вт, определяют по формуле

Q огр = k ст ·F ст (t н – t в) + k пок ·F пок (t н – t в), (4)

где k i – коэффициент теплопередачи через ограждения, Вт/(м 2 ·К);

F i – площадь поверхности ограждения, м 2 ;

t н, t в – температура наружного и внутреннего воздуха соответственно, °С.

Q огр = 0,26·289(26,6-22) = 345,6 Вт

2.1.5 Расчет теплопоступлений через остекленные проемы

Расчет теплопоступлений в помещение через остекленные проемы за счет разности температур наружного и внутреннего воздуха определяют по формуле

Q о.п. = [(t н – t в)/R o ]F общ,(5)

где R o – термическое сопротивление остекленных проемов, (м 2 ·К)/Вт, которое определяется по формуле

R o = 1/k окна (6)

F общ – общая площадь остекленных проемов, м 2 .

Q о.п = 0 Вт, так как нет остекленных проемов.

Таблица 3 – Тепловой баланс помещения в различные периоды года

2.2 Расчет влаговыделений

Поступление влаги в помещение происходит от испарений с поверхности кожи людей и от их дыхания, со свободной поверхности жидкости, с влажных поверхностей материалов и изделий, а также в результате сушки материалов, химических реакций, работы технологического оборудования.

Влаговыделения от людей W л, кг/ч, в зависимости от их состояния (покой, вид выполняемой ими работы) и температуры окружающего воздуха определяют по формуле

W л = w л ·n·10 -3 , (7)

где w л – влаговыделение одним человеком, г/ч;

n – число людей, чел.

W л хол = 40·285·10 -3 = 11,4 кг/ч

W л тепл = 44·285·10 -3 = 12,54 кг/ч

2.3 Определение углового коэффициента луча процесса в помещении

На основании расчета тепловлажностных балансов определяют угловой коэффициент луча процесса в помещении для теплого ε т и холодного ε х периодов года, кДж/кг

ε т = (ΣQ т ·3,6)/W т,(8)

ε х = (ΣQ х ·3,6)/W х.(9)

Численные величины ε т и ε х характеризуют тангенс угла наклона луча процесса в помещении.

ε т = (40290,8·3,6)/12,54 = 11567

ε х = (41945,2·3,6)/11,4 = 13246

3 РАСЧЕТ СИСТЕМЫ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

3.1 Выбор и обоснование типа систем кондиционирования воздуха

Выбор и обоснование типа СКВ осуществляют на основе анализа условий функционирования кондиционируемого объекта, указанных в задании на проектирование.

Исходя из количества помещений, предусматривают одно- или многозональные системы кондиционирования воздуха, а затем производят оценку возможности их применения с рециркуляцией отработавшего воздуха, которая позволяет уменьшить расход тепла и холода.

СКВ с первой и второй рециркуляцией обычно используют для помещений, не требующих высокой точности регулирования температуры и относительной влажности.

Принятие окончательного решения по выбору принципиальной схемы обработки воздуха производят после определения производительности СКВ и расхода наружного воздуха.

3.2 Выбор схем воздухораспределения. Определение допустимой и рабочей разности температур.

По гигиеническим показателям и равномерности распределения параметров в рабочей зоне для большинства кондиционируемых помещений наиболее приемлемой является подача приточного воздуха с наклоном в рабочую зону на уровне 4…6 м и с удалением общеобменной вытяжки в верхней зоны.

1. Определяем допустимый перепад температур

Δt доп = 2°С.

2. Определяем температуру приточного воздуха

t п = t в - Δt доп (10)

t п теп = 22 – 2 = 20°С,

t п хол = 20 – 2 = 18 °С.

3. Определяем температуру уходящего воздуха

t у = t в + grad t(H – h),(11)

где gradt – градиент температуры по высоте помещения выше рабочей зоны, °С;

H – высота помещения, м;

h – высота рабочей зоны, м.

Градиент температуры по высоте помещения определяют в зависимости от удельных избытков явного тепла в помещении q я, Вт

q я = ΣQ/V пом = (ΣQ п -Q п + Q я)/ V пом (12)

q я тепл = (40290,8 – 22800 + 22230)/1820,7 = 21,8 Вт

q я хол = (41945,2 – 34200 + 25650)/ 1820,7 = 18,3 Вт

t у тепл = 22 + 1,2(6,3 – 1,5) = 27,76°С;

t у хол = 20 + 0,3(6,3 – 1,5) = 21,44°С.

4. Определяем рабочую разность температур

Δt р = t у - t п (13)

Δt р тепл = 27,76 – 20 = 7,76°С;

Δt р хол = 21,44 – 18 = 3,44°С.

3.3 Определение производительности систем кондиционирования воздуха

Для систем кондиционирования воздуха различают полную производительность G, учитывающую потерю воздуха на утечку в сетях приточных воздуховодов, кг/ч, и полезную производительность G п, используемую в кондиционируемых помещениях, кг/ч.

Полезную производительность СКВ определяем по формуле

G п = ΣQ т /[(J у – J п)·0,278],(14)

где ΣQ т – суммарные теплоизбытки в помещении в теплый период года, Вт;

J у, J п – удельная энтальпия уходящего и приточного воздуха в теплый период года, кДж/кг.

G п = 40290,8/[(51 – 40))·0,278] = 13176кг/ч.

Полную производительность вычисляем по формуле

G = К п ·G п,(15)

где К п – коэффициент, учитывающий величину потерь в воздуховодах.

G = 1,1·13176= 14493,6 кг/ч.

Объемную производительность систем кондиционирования воздуха L, м 3 /ч, находим по формуле

где ρ – плотность приточного воздуха, кг/м 3

ρ = 353/(273+t п)(17)

ρ = 353/(273+20) = 1,2кг/м 3 ;

L = 14493,6 /1,2 = 12078 м 3 /ч.

3.4 Определение количества наружного воздуха

Количество наружного воздуха, используемого в СКВ, влияет на затраты тепла и холода при тепловлажностной обработке, а также на расход электроэнергии на очистку от пыли. В связи с этим всегда следует стремиться к возможному уменьшению его количества.

Минимально допустимое количество наружного воздуха в системах кондиционирования воздуха определяют, исходя из требований:

Обеспечения требуемой санитарной нормы подачи воздуха на одного человека, м 3 /ч

L н ΄ = l·n,(18)

где l – нормируемый расход наружного воздуха, подаваемого на одного человека, м 3 /ч;

n – число людей в помещении, чел.

L н ΄ = 25·285 = 7125 м 3 /ч;

Компенсации местной вытяжки и создания в помещении избыточного давления

L н ΄΄ = L мо + V пом ·К΄΄ , (19)

где L мо – объем местной вытяжки, м 3 /ч;

V пом – объем помещения, м 3;

К΄΄-кратность воздухообмена.

L н ΄΄ = 0 + 1820,7·2 = 3641,4 м 3 /ч.

Выбираем большее значение из L н ΄ и L н ΄΄ и принимаем для дальнейших расчетов L н ΄ = 7125 м 3 /ч.

Определяем расход наружного воздуха по формуле

G н = L н ·ρ н, (20)

гдеρ н – плотность наружного воздуха, кг/м 3 .

G н =7125·1,18 = 8407,5 кг/ч.

Проверяем СКВ на рециркуляцию:

14493,6 кг/ч >8407,5кг/ч, условие выполняется.

2. J у < J н

51кДж/кг < 60 кДж/кг, условие выполняется.

3. В воздухе не должны содержаться токсичные вещества.

Примечание: все условия выполняются, поэтому применяем схему СКВ с рециркуляцией.

Принятый расход наружного L н должен составлять не менее 10% от общего количества приточного воздуха, то есть должно выполняться условие

8407,5кг/ч ≥ 0,1· 14493,6

8407,5кг/ч ≥ 1449,36 кг/ч, условие выполняется.

3.5 Построение схемы процессов кондиционирования воздуха на J - d диаграмме

3.5.1 Построение схемы процессов кондиционирования воздуха для теплого периода года

Схема процессов кондиционирования воздуха наJ-d диаграмме для теплого периода года приведена в приложении А.

Рассмотрим порядок построения схемы СКВ с первой рециркуляцией.

а) нахождение на J-d диаграмме положения точек Н и В, характеризующих состояние наружного и внутреннего воздуха, по параметрам, которые приведены в таблицах 1 и 2;

б) проведение через т. В луча процесса с учетом величины углового коэффициентаε т;

в) определение положения других точек:

Т. П (то есть состояние приточного воздуха), которая лежит на пересечении изотермы t п с лучом процесса;

Т. П΄ (то есть состояние приточного воздуха на выходе из второго воздухонагревателя ВН2), для чего от т. П вертикально вниз откладывают отрезок в 1°С (отрезок ПП΄ характеризует нагрев приточного воздуха в воздуховодах и вентиляторе);

Т. О (то есть состояние воздуха на выходе из оросительной камеры), для чего от т. П΄ вниз по линии d = const проводят линию до пересечения с отрезком φ = 90% (отрезок ОП΄ характеризует нагрев воздуха во втором воздухонагревателе ВН2);

Т. У (то есть состояние воздуха, уходящего из помещения), лежащей на пересечении изотермы t у с лучом процесса (отрезок ПВУ характеризует ассимиляцию тепла и влаги воздухом в помещении);

Т. У΄ (то есть состояние рециркуляционного воздуха перед его смешиванием с наружным воздухом), для чего от т. У по линииd = const

откладывают вверх отрезок в 0,5 °С (отрезок УУ΄ характеризует нагрев уходящего воздуха в вентиляторе);

Т. С (то есть состояние воздуха после смешивания рециркуляционного воздуха с наружным воздухом).

Точки У΄ и Н соединяют прямой. Отрезок У΄Н характеризует процесс смешивания рециркуляционного и наружного воздуха. Точка С находится на прямой У΄Н (на пересечении с J с).

Удельную энтальпию J с, кДж/кг, точки С вычисляем по формуле

J с = (G н · J н + G 1р · J у΄)/ G, (21)

гдеJ н – удельная энтальпия наружного воздуха, кДж/кг;

J с – удельная энтальпия воздуха, образовавшегося после смешения наружного и рециркуляционного, кДж/кг;

G 1р – расход воздуха первой рециркуляции, кг/ч

G 1р =G - G н (22)

G 1р =14493,6– 8407,5= 6086,1 кг/ч

J с = (8407,5 ·60+6086,1 ·51)/ 14493,6= 56,4 кДж/кг

Точки С и О соединяют прямой. Получившийся отрезок СО характеризует политропический процесс тепловлажностной обработки воздуха в оросительной камере. На этом построение процесса СКВ заканчивают. Параметры базовых точек заносим по форме в таблицу 4.

3.5.2 Построение схемы процессов кондиционирования воздуха для холодного периода года

Схема процессов кондиционирования воздуха наJ-d диаграмме для холодного периода года приведена в приложении Б.

Рассмотрим порядок построения схемы с первой рециркуляцией воздуха наJ-d диаграмме.

а) нахождениенаJ-d диаграмме положения базовых точек В и Н, характеризующих состояние наружного и внутреннего воздуха, по параметрам, которые приведены в табл. 1, 2;

б) проведение через т. В луча процесса с учетом величины углового коэффициента ε х;

в) определение положения точек П, У, О:

Т. У, расположенной на пересечении изотермы t у (для холодного периода) с лучом процесса;

Т. П, расположенной на пересечении изоэнтальпы J п с лучом процесса; численное значение удельной энтальпии J п приточного воздуха для холодного периода года вычисляют предварительно из уравнения

J п = J у – [ΣQ х /(0,278·G)],(23)

гдеJ у – удельная энтальпия воздуха, уходящего из помещения в холодный период года, кДж/кг;

Q х – суммарные полные теплоизбытки в помещении в холодный период года, Вт;

G – производительность СКВ в теплый период года, кг/ч.

J п = 47 - = 38,6 кДж/кг

Отрезок ПВУ характеризует изменение параметров воздуха в помещении.

Т. О (то есть состояние воздуха на выходе из оросительной камеры), расположенной на пересечении линии d п с линией φ = 90%; отрезок ОП характеризует нагрев воздуха во втором воздухонагревателе ВН2;

Т. С (то есть состояние воздуха после смешения наружного воздуха, прошедшего нагрев в первом воздухонагревателе ВН1, с уходящим из помещения воздухом), расположенной на пересечении изоэнтальпы J о с линией d с; численное значение вычисляют по формуле

d с = (G н · d н + G 1р · d у)/ G (24)

d с = (8407,5· 0,8 + 6086,1 · 10)/ 14493,6= 4,7 г/кг.

Т. К, характеризующей состояние воздуха на выходе из первого воздухонагревателя ВН1 и находящейся на пересечении d н (влагосодержание наружного воздуха) с продолжениемпрямой УС.

Параметры воздуха для базовых точек заносим по форме в таблицу 5.

Таблица 5 – Параметры воздуха в базовых точках в холодный период года

Параметры воздуха

температура t,

Удельная

энтальпия J, кДж/кг

Влагосодержание d, г/кг

Относительная

влажность φ, %

П 13,8 38,6 9,2 85
В 20 45 9,8 68
У 21,44 47 10 62
О 14,2 37 9,2 90
С 25 37 4,8 25
Н -18 -16,3 0,8
К 28 30 0,8 4

3.6 Определение потребности теплоты и холода в системах кондиционирования воздуха

В теплый период года расход теплоты во втором воздухонагревателе, Вт

Q т ВН2 = G(J п΄ - J о)·0,278, (25)

где J п΄ - удельная энтальпия воздуха на выходе из второго воздухонагревателя, кДж/кг;

J о - удельная энтальпия воздуха на входе во второй воздухонагреватель, кДж/кг.

Q т ВН2 = 14493,6 (38 – 32,2)·0,278 = 23369,5 Вт

Расход холода для осуществления процесса охлаждения и осушки, Вт, определяем по формуле

Q охл = G(J с - J о)·0,278,(26)

где J с -удельная энтальпия воздуха на входе в оросительную камеру, кДж/кг;

J о - удельная энтальпия воздуха на выходе из оросительной камеры, кДж/кг.

Q охл = 14493,6 (56,7 – 32,2)·0,278 = 47216 Вт

Количество сконденсировавшейся на воздухе влаги, кг/ч

W К = G(d с - d о)·10 -3 ,(27)

гдеd с – влагосодержание воздуха на входе в оросительную камеру, г/кг;

d о - влагосодержание воздуха на выходе из оросительной камеры, г/кг.

W К = 14493,6 (11,5 – 8)·10 -3 = 50,7 кг/ч

В холодный период года расход теплоты в первом воздухонагревателе, Вт

Q х ВН1 = G(J к - J н)·0,278,

гдеJ к – удельная энтальпия воздуха на выходе из первого воздухонагревателя, кДж/кг;

J н - удельная энтальпия воздуха на входе в первый воздухонагреватель, кДж/кг.

Q х ВН1 = 14493,6 (30- (-16,3))·0,278=18655,3 Вт

Расход теплоты в холодный период года во втором воздухонагревателе, Вт

Q х ВН2 = G(J п - J о)·0,278,(28)

гдеJ п – удельная энтальпия воздуха на выходе из второго воздухонагревателя в холодный период года, кДж/кг;

J о -удельная энтальпия воздуха на входе во второй воздухонагреватель в холодный период года, кДж/кг.

Q х ВН2 = 14493,6 (38,6 – 37)·0,278 = 6447 Вт

Расход воды на увлажнение воздуха в оросительной камере (на подпитку оросительной камеры), кг/ч

W П = G(d о – d с)·10 -3 (29)

W П = 14493,6 (9,2 – 4,8)·10 -3 = 63,8 кг/ч.

3.7 Выбор марки кондиционера и его компоновка

Кондиционеры марки КТЦЗ могут работать в двух режимах производительности по воздуху:

В режиме номинальной производительности

В режиме максимальной производительности

Кондиционеры марки КТЦЗ изготавливают только по базовым схемам компоновки оборудования или с их модификациями, образующимися путем доукомплектования необходимым оборудованием, замены одного оборудования другим или исключения отдельных видов оборудования.

Индекс кондиционера марки КТЦЗ определяют с учетом полной объемной производительности.

L·1,25 = 12078·1,25 = 15097,5 м 3 /ч

Выбираем кондиционер марки КТЦЗ – 20.

3.8 Расчеты и подбор элементов кондиционера

3.8.1 Расчет камеры орошения

Расчет ОКФЗ производим по методике ВНИИКондиционер.

а) теплый период

Определяем объемную производительность СКВ

L =12078м 3 /ч

исполнение 1, общее число форсунок n ф = 18 шт.

Определяем коэффициент адиабатной эффективности процесса с учетом характеристик луча процесса камеры по формуле

Е а = (J 1 – J 2)/(J 1 – J пр),(30)

где J 1 , J 2 – энтальпия воздуха на входе, на выходе из камеры, соответственно,

J пр -энтальпия предельного состояния воздуханаJ-d диаграмме,

Е а = (56,7 – 32,2)/(56,7 – 21) = 0,686

Определяем относительный перепад температур воздуха

Θ = 0,33·с w ·μ·(1/ Е п – 1/ Е а) (31)

Θ = 0,33·4,19·1,22·(1/ 0,42 – 1/ 0,686) = 1,586

Вычисляем начальную температуру воды в камере

t w 1 = t в пр -Θ(J 1 – J 2)/ с w ·μ, (32)

где t в пр – предельная температура воздуха, °С.

t w 1 = 6,5-1,586(56,7 – 32,2)/ 4,19·1,22 =3,32 °С

Рассчитываем конечную температуру воды (на выходе из камеры) по формуле

t w 2 = t w 1 + (J 1 – J 2)/ с w ·μ(33)

t w 2 = 1,32 + (56,7 – 32,2)/ 4,19·1,22 =9,11 °С

Определяем расход разбрызгиваемой воды

G w = μ·G(34)

G w = 1,22·14493,6 = 17682,2 кг/ч (~17,7 м 3 /ч)

Вычисляем расход воды через форсунку (производительность форсунки)

g ф = G w /n ф (35)

g ф = 17682,2 /42 = 421 кг/ч

Необходимое давление воды перед форсункой определяем по формуле

ΔР ф = (g ф /93,4) 1/0,49 (36)

ΔР ф = (421/93,4) 1/0,49 = 21,6 кПа

Устойчивая работа форсунок соответствует 20 кПа ≤ ΔР ф ≤ 300кПа. Условие выполняется.

Расход холодной воды от холодильной станции определяют по формуле

G w х = Q хол / с w (t w 1 - t w 2)(37)

G w х = 47216/ 4,19(9,11 – 3,32) = 4935,8 кг/ч (~4,9м 3 /ч).

б) холодный период

В этот период года ОКФЗ работает в режиме адиабатического увлажнения воздуха.

Определяем коэффициент эффективности теплообмена по формуле

Е а = (t 1 – t 2)/(t 1 – t м1)(38)

Е а = (25 – 14,2)/(25 –13,1) = 0,908

Коэффициент орошения определяем из графической зависимости Е а =f(μ).

Также графическим путем по значению μ находим численное значение коэф-

фициента приведенной энтальпийной эффективности Е п.

Вычисляем расход разбрызгиваемой воды по формуле (34)

G w = 1,85·14493,6 = 26813,2 кг/ч (~26,8 м 3 /ч)

Определяем производительность форсунки по формуле (35)

g ф = 26813,2 /42 = 638 кг/ч

Определяем требуемое давление воды перед форсунками по формуле (36)

ΔР ф = (638/93,4) 1/0,49 = 50,4 кПа

Вычисляем расход испаряющейся воды в камере по формуле

G w исп = G(d o – d с)·10 -3 (39)

G w исп = 14493,6 (9,2– 4,8)·10 -3 = 63,8 кг/ч

Как видно из расчета, наибольший расход воды (26,8 м 3 /ч) и наибольшее давление воды перед форсунками (50,4 кПа) соответствуют холодному периоду года. Эти параметры принимаются за расчетные при подборе насоса.

3.8.2 Расчет воздухонагревателей

Расчет воздухонагревателей осуществляют на два периода года: вначале производят расчет на холодный период, затем – на теплый период года.

Также раздельно производят расчет воздухонагревателей первого и второго подогрева.

Целью расчета воздухонагревателей является определение требуемой и располагаемойповерхностей теплопередачи и режима их работы.

При поверочном расчете задаются типом и числом базовых воздухонагревателей, исходя из марки центрального кондиционера, то есть вначале принимают стандартную компоновку, а расчетом ее уточняют.

Холодный период

При расчете вычисляют:

Теплоту, необходимую для нагрева воздуха, Вт

Q воз = 18655,3Вт;

Расход горячей воды, кг/ч:

G w = 3,6Q воз /4,19(t w н – t w к) = 0,859Q воз /(t w н – t w к) (40)

G w =0,859·18655,3/(150 – 70) = 200,3 кг/ч;

В зависимости от марки кондиционера выбирают число и тип базовых теплообменников, для которых вычисляют массовую скорость движения воздуха в живом сечении воздухонагревателя, кг/(м 2 ·с):

ρv = G воз /3600·f воз,(41)

гдеf воз – площадь живого сечения для прохода воздуха в воздухонагревателе, м 2

Скорость движения горячей воды по трубам теплообменника, м/с

w = G w /(ρ w ·f w ·3600), (42)

где ρ w – плотность воды при ее средней температуре, кг/м 3 ;

f w – площадь сечения для прохода воды, м 2 .

w = 200,3/(1000·0,00148·3600) = 0,038 м/с.

Принимаем скорость, равную 0,1 м/с

Коэффициент теплопередачи, Вт/(м 2 ·К)

К = а(ρv) q w r ,(43)

где а, q, r – коэффициенты

Среднюю разность температур между теплоносителями:

Δt ср = (t w н + t w к)/2 – (t н + t к)/2 (44)

Δt ср = (150 + 70)/2 – (-18 +28)/2 = 35°С

Требуемую площадь теплообмена, м 2

F тр = Q воз /(К· Δt ср) (45)

F тр = 18655,3/(27,8· 35) = 19,2 м 2

[(F р - F тр)/ F тр ]·100≤15%(46)

[(36,8 – 19,2)/ 19,2]·100 = 92%

Условие не выполняется, принимаем воздухонагреватель ВН1 с запасом.

а) холодный период

Q воз = 6447 Вт;

Расход горячей воды, кг/ч, по формуле (40)

G w =0,859·6447/(150 – 70) = 69,2 кг/ч;

В зависимости от марки кондиционера выбирают число и тип базовых теплообменников, для которых вычисляют массовую скорость движения воздуха в живом сечении воздухонагревателя, кг/(м 2 ·с), по формуле (41) ρv = 14493,6 /3600·2,070 = 1,94 кг/(м 2 ·с);

Скорость движения горячей воды по трубам теплообменника, м/с, по формуле (42)

w = 69,2 /(1000·0,00148·3600) = 0,013 м/с.

Принимаем скорость, равную 0,1 м/с.

Коэффициент теплопередачи, Вт/(м 2 ·К), по формуле (43)

К = 28(1,94) 0,448 0,1 0,129 = 27,8 Вт/(м 2 ·К);

Среднюю разность температур между теплоносителями, по формуле (44)

Δt ср = (150 + 70)/2 – (13,8 +14,2)/2 = 26°С

Требуемую площадь теплообмена, м 2 , по формуле (45)

F тр = 6447/(27,8· 26) = 8,9 м 2

Проверяем условие по формуле (46)

[(36,8 – 8,9)/ 8,9]·100 =313%

б) теплый период

По выше предложенным формулам (40)-(46) делаем перерасчет для теплого периода

Q воз = 23369,5 Вт;

G w =0,859·23369,5 /(70 – 30) = 501,8 кг/ч

ρv = 14493,6 /3600·2,070 = 1,94 кг/(м 2 ·с);

w = 501,8 /(1000·0,00148·3600) = 0,094 м/с.

Для дальнейших расчетов принимаем скорость, равную 0,1 м/с.

К = 28(1,94) 0,448 0,1 0,129 = 27,88 Вт/(м 2 ·К);

Δt ср = (30 + 70)/2 – (12 +19)/2 = 34,5 °С

F тр = 23369,5 /(27,88 · 34,5) = 24,3 м 2

При этом необходимо выполнять следующее условие: между располагаемой поверхностьюF р (предварительно выбранным воздухонагревателем) и требуемой поверхностью F тр запас поверхности теплообмена не должен превышать 15%

[(36,8 – 24,3)/ 24,3]·100 = 51%

Условие не выполняется, принимаем воздухонагреватель ВН2 с запасом.

3.8.3 Подбор воздушных фильтров

Для очистки воздуха от пыли в СКВ включают фильтры, конструктивное решение которых определяется характером этой пыли и требуемой чистотой воздуха.

Выбор воздушного фильтра осуществляют согласно [ 2, кн.2].

Исходя из имеющихся данных выбираем фильтр ФР1-3.

3.8.4 Расчет аэродинамического сопротивления систем кондиционирования воздуха

Полное аэродинамическое сопротивление СКВ находят по формуле

Р с = ΔР пк +ΔР ф +ΔР в1 +ΔР ок + ΔР в2 + ΔР пр +ΔР в.в. , (47)

гдеΔР пк – сопротивление приемного блока, Па

ΔР пк = Δh пк ·(L/L к) 1,95 (48)

(здесь L – расчетная объемная производительность СКВ, м 3 /ч;

L к – объемная производительность кондиционера, м 3 /ч;

Δh пк – сопротивление блока при номинальной производительности кондиционера (Δh пк = 24 Па), Па);

ΔР пк = 24·(12078/20000) 1,95 = 8,98 Па;

ΔР ф – аэродинамическое сопротивление фильтра (при максимальной запыленности фильтра ΔР ф = 300 Па), Па;

ΔР в1 – аэродинамическое сопротивление первого воздухонагревателя, Па;

ΔР в1 = 6,82 (ρv) 1,97 ·R

ΔР в1 = 6,82 (1,94) 1,97 ·0,99 = 24,9 Вт.

ΔР в2 – аэродинамическое сопротивление второго воздухонагревателя, Па

ΔР в2 = 10,64·(υρ) 1,15 ·R,(49)

(здесь R – коэффициент, зависящий от среднеарифметической температуры воздуха в воздухонагревателе);

ΔР в2 = 10,64·(1,94) 1,15 ·1,01 = 23,03 Па;

ΔР ок – аэродинамическое сопротивление оросительной камеры, Па

ΔР ок = 35·υ ок 2 ,(50)

(здесь υ ок – скорость воздуха в оросительной камере, м/с);

ΔР ок = 35·2,5 2 = 218,75 Па;

ΔР пр – аэродинамическое сопротивление присоединительной секции, Па

ΔР пр = Δh пр (L/L к) 2 , (51)

(здесьΔh пр – сопротивление секции при номинальной производительности (Δh пр = 50 Па), Па);

ΔР пр = 50(12078/20000) 2 = 18,2 Па;

ΔР в.в – аэродинамическое сопротивление в воздуховодах и воздухораспределителях (ΔР в.в = 200 Па), Па.

Р с = 8,98 + 300 +24,9+218,75+ 23,03 + 18,2 +200 = 793,86 Па.

3.9 Подбор вентилятора системы кондиционирования воздуха

Исходными данными для подбора вентилятора являются:

Производительность вентилятора L, м 3 /ч;

Условное давление, развиваемое вентилятором Р у, Па, и уточняемое по формуле

Р у = Р с [(273+t п)/293]·Р н /Р б, (52)

где t п – температура приточного воздуха в теплый период года, °С;

Р н – давление воздуха в нормальных условиях (Р н = 101320 Па), Па;

Р б – барометрическое давление в месте установки вентилятора, Па.

Р у = 793,86 [(273+20)/293]·101230/101000 = 796 Па.

Исходя из полученных данных подбираем вентилятор В.Ц4-75 исполнение Е8.095-1.

n в = 950 об/мин

N у = 4 кВт

3.10 Подбор насоса для камеры орошения

Подбор насоса осуществляют с учетом расхода жидкости и требуемого

ора. Расход жидкости должен соответствовать максимальному объемному

расходу циркулирующей воды в оросительной камере, м 3 /ч

L w = G w max /ρ,(53)

гдеG w max – массовый максимальный расход воды в ОКФ, кг/ч;

ρ – плотность воды, поступающей в ОКФ, кг/м 3 .

L w = 26813,2 /1000 = 26,8 м 3 /ч

Требуемый напор насоса Н тр, м вод. ст., определяют по формуле

Н тр = 0,1Р ф + ΔН, (54)

где Р ф – давление воды перед форсунками, кПа;

ΔН – потери напора в трубопроводах с учетом высоты подъема к коллектору (для оросительных камер ΔН = 8 м вод. ст.), м вод. ст..

Н тр = 0,1·50,4 + 8 = 13,04 м вод. ст.

По полученным данным подбираем насос и электродвигатель к нему.

Параметры подобранного насоса:

Наименование: КК45/30А;

Расход жидкости 35 м 3 /ч;

Полный напор 22,5 м вод. ст.;

Параметры подобранного электродвигателя:

Тип А02-42-2;

Масса 57,6 кг;

Мощность 3,1 кВт.

3.11 Расчет и подбор основного оборудования системы холодоснабжения

Целью расчета основного оборудования системы холодоснабжения является:

Вычисление требуемой холодопроизводительности и выбор типа холодильной машины;

Нахождение режимных параметров работы холодильной машины и проведение на их основе поверочного расчета основных элементов холодильной установки-испарителя и конденсатора.

Расчет осуществляется в следующей последовательности:

а) находим требуемую холодопроизводительность холодильной машины, Вт

Q х = 1,15·Q охл,(55)

гдеQ охл – расход холода, Вт.

Q х = 1,15·47216= 59623,4 Вт

б) с учетом величины Q х выбираем тип холодильной машины МКТ40-2-1.

в) определяем режим работы холодильной машины, для чего вычисляем:

Температуру испарения холодильного агента, °С

t и = (t w к +t х)/2 – (4…6), (56)

где t w к – температура жидкости, выходящей из оросительной камеры и поступающей в испаритель, °С;

t х – температура жидкости, выходящей из испарителя и поступающей в оросительную камеру, °С.

Температуру конденсации холодильного агента, °С

t к = t w к2 +Δt,(57)

где t w к2 – температура воды, выходящей из конденсатора, °С

t w к2 =t w к1 +Δt (58)

(здесь t w к1 – температура воды, поступающей в конденсатор, °С (Δt = 4…5°С); при этомt к не должна превышать +36°С.)

t w к1 = t мн + (3…4),(59)

где t мн – температура наружного воздуха по мокрому термометру в теплый период года, °С.

t и = (3,32+9,11)/2 – 4 = 2,215°С

t мн = 10,5°С

t w к1 = 10,5 + 4 = 10,9°С

t w к2 =10,9 + 5 = 15,9°С

t к = 15,9 + 5 = 20,9 °С

Температуру переохлаждения жидкого хладагента перед регулирующим вентилем, °С

t пер = t w к1 + (1…2)

t пер = 10,9 + 2 = 12,9 °С

Температуру всасывания паров холодильного агента в цилиндр компрессора, °С

t вс = t и + (15…30),(60)

где t и – температура испарения холодильного агента, °С

t вс = 0,715+25 = 25,715 °С

г) производят поверочный расчет оборудования, для чего вычисляют:

Поверхность испарителя по формуле

F и = Q охл /К и ·Δt ср.и,(61)

где К и – коэффициент теплопередачи кожухотрубного испарителя, работающего на хладоне 12 (К и = (350…530)Вт/м 2 ·К);

Δt ср.и – средняя разность температур между теплоносителями в испарителе, определяемая по формуле

Δt ср.и = (Δt б – Δt м)/2,3lg Δt б / Δt м (62)

Δt б = Δt w 2 - t и (63)

Δt б = 9,11 – 2,215 =6,895 °С (64)

Δt м =3,32 – 2,215 = 1,105°С

Δt ср.и = (6,895– 1,105)/2,3lg6,895 / 1,105= 3,72 °С

F и = 47216/530·3,72 = 23,8 м 2

Расчетную поверхность F и сравниваем с поверхностью испарителя F и `, приведенной в технической характеристике холодильной машины; при этом следует выполнить условие

F и ≤ F и `

23,8 м 2 < 24 м 2 – условие выполняется

Поверхность конденсатора по формуле

F к = Q к /К к ·Δt ср.к,(65)

Q к = Q х + N к.ин,(66)

(здесьN к.ин – потребляемая индекаторная мощность компрессора; с некоторым запасом индекаторную мощность можно принимать равной потребляемой мощности компрессора, Вт);

К к – коэффициент теплопередачи кожухотрубного конденсатора, работающего на хладоне 12 (К к = (400…650) Вт/м 2 ·К);

Δt ср.к – средняя разность температур между теплоносителями в конденсаторе, определяемая по формуле, °С

Δt ср.к = (Δt б – Δt м)/2,3lg Δt б / Δt м (67)

Δt б = t к - t w к1 (68)

Δt б = 20,9 – 3,32 = 17,58°С

Δt м = t к - t w к2 (69)

Δt м = 20,9 – 9,11 = 11,79 °С

Δt ср.к = (17,58 – 11,79)/2,3lg17,58/11,79 = 14 ° С

Q к = 59623,4 + 19800 = 79423,4 Вт

F к = 79423,4 /400·14= 14,2 м 2

Расчетную поверхность конденсатора F к сравниваем с поверхностью конденсатора F к `, числовое значение которой приведено в технической характеристике холодильной машины, при этом следует выполнить условие

F к ≤ F к `

14,2 м 2 ≤ 16,4 м 2 – условие выполняется.

Расход воды в конденсаторе, кг/с, вычисляют по формуле

W = (1,1· Q к)/c w ·(t w к2 - t w к1),(70)

где c w – удельная теплоемкость воды (c w = 4190 Дж/(кг·К))

W = (1,1· 79423,4)/4190·(9,11– 1,32) = 2,6 кг/с.


Список использованных источников

1. СНиП 2.04.05-91. Отопление, вентиляция и кондиционирование. – М.: Стройиздат, 1991.

2. Внутренние санитарно-технические устройства: Вентиляция и кондиционирование воздуха /Б.В. Баркалов, Н.Н. Павлов, С.С. Амирджанов и др.; Под ред. Н.Н. Павлова Ю.И. Шиллера.: В 2 кн. – 4-е изд., перераб. и доп. – М.: Стройиздат, 1992. Кн. 1, 2. Ч.3.

3. Аверкин А. Г. Примеры и задачи по курсу «Кондиционирование воздуха и холодоснабжение»:Учеб. пособие. – 2-е изд., испр. и доп. – М.: Издательство АСВ, 2003.

4. Аверкин А. Г. Кондиционирование воздуха и холодоснабжение: Методические указания к курсовой работе. – Пенза: ПИСИ, 1995.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Описание конструкции бытового холодильника. Расчет теплопритоков в шкаф. Тепловой расчет холодильной машины. Теплоприток при открывании двери оборудования. Расчет поршневого компрессора и теплообменных аппаратов. Обоснование выбора основных материалов.

    курсовая работа , добавлен 14.12.2012

    Определение вместимости холодильника, расчет его площадей. Необходимая толщина теплоизоляции. Конструкции ограждений холодильника. Теплоприток через ограждения. Продолжительность холодильной обработки продукта. Расчет и подбор воздухоохладителей.

    курсовая работа , добавлен 09.04.2012

    Общая характеристика и принцип работы холодильной установки молочного завода, ее технико-экономическое обоснование. Методика расчета строительной площади холодильника. Тепловой расчет принятого холодильника. Расчет и подбор камерного оборудования.

    курсовая работа , добавлен 03.06.2010

    Проектный расчет воздушного холодильника горизонтального типа. Использование низкопотенциальных вторичных энергоресурсов. Определение тепловой нагрузки холодильника, массового и объемного расхода воздуха. Тепловой и экзегетический балансы холодильника.

    курсовая работа , добавлен 21.06.2010

    Описание конструкции двухкамерного компрессионного холодильника. Теплопритоки в шкаф холодильника. Тепловой расчет холодильной машины. Обоснование выбора основных материалов. Расчет поршневого компрессора, теплообменных аппаратов, капиллярной трубки.

    курсовая работа , добавлен 07.08.2013

    Принцип действия холодильника, процесс охлаждения. Классификация бытовых холодильников, основные структурные блоки. Расчет холодильного цикла, испарителя, конденсатора и тепловой нагрузки бытового компрессионного холодильника с электромагнитным клапаном.

    курсовая работа , добавлен 23.03.2012

    Техническая характеристика технологического оборудования, потребляющего холод. Расчет числа строительных прямоугольников камер хранения, толщины теплоизоляционного слоя. Тепловой расчет камеры холодильника. Выбор и обоснованные системы охлаждения.

    курсовая работа , добавлен 11.01.2012

Выбор системы охлаждения для РЭА заданного типа. Способ охлаждения во многом определяет конструкцию РЭА, поэтому даже на ранней стадии проектирования, т. Е. На стадии технического предложения или эскизного проекта, необходимо выбрать систему охлаждения РЭА. Неудачное решение этой задачи может обнаружиться только на более поздних этапах конструирования (детальная проработка конструкции, испытание опытного образца и т. П.), что может свести на нет работу большого коллектива, а сроки создания РЭА значительно увеличатся.

На первых этапах проектирования в распоряжении конструктора имеется техническое задание (ТЗ), в котором обычно содержится следующая весьма ограниченная информация:

Суммарная мощность Ф тепловыделения в блоке;

Диапазон возможного изменения температуры окружающей среды

Пределы изменения давления окружающей среды -

Время непрерывной работы прибора -

Допустимые температуры элементов-

Коэффициент заполнения аппарата

(12.1)

Где Vi - объем i-гo элемента РЭА; п - число элементов; V- объем, занимаемый РЭА. Требуется также задать горизонтальные (Li, L2) и вертикальные (L3) размеры корпуса РЭА. Эти исходные данные недостаточны для детального анализа теплового режима РЭА, но их можно использовать для предварительной оценки и выбора системы охлаждения. Последний носит вероятностный характер, т. Е, дает возможность оценить вероятность обеспечения, заданного по ТЗ теплового режима РЭА при выбранном способе охлаждения. По результатам обработки статистических данных для реальных конструкций, детальных тепловых расчетов и данных испытания макетов были построены графики (рис. 12.1), характеризующие области целесообразного применения различных способов охлаждения. Эти графики построены для непрерывной работы РЭА и связывают два основных показателя: . Первый показатель перегрев относительно окружающей среды tc корпуса наименее теплостойкого элемента, для которого допустимая и приведенная в ТЗ температура имеет минимальное значение.

Заметим, что для свободного охлаждения т. Е. Соответствует максимальной температуре окружающей среды по ТЗ; для принудительного охлаждения т. Е. Соответствует температуре воздуха (жидкости) на входе в РЭА. Второй показатель q равен плотности теплового потока, проходящего через условную площадь поверхности теплообмена:

(12.2)


Рисунок 12.1 Области целесообразного применения различных способов охлаждения

Где Ф - суммарная мощность, рассеиваемая с этой поверхности; коэффициент, учитывающий давление воздуха (при атмосферном давлении коэффициент заполнения, определяемый по формуле (12.1).

На рис. 12.1 представлены два типа областей: в одном можно рекомендовать применение какого-либо одного способа охлаждения (не заштрихованы: 1 - свободное воздушное, 3 - принудительное воздушное, 5-принудительное испарительное); в другом возможно применение двух или трех способов охлаждения (заштрихованы: 2 - свободное и принудительное воздушное, 4 - принудительное воздушное и жидкостное, 6 - принудительное жидкостное и свободное испарительное, 7- принудительное жидкостное, принудительное и свободное испарительное, 8 -свободное принудительное и свободное испарительное, 9-свободное и принудительное испарительное) .

Верхние кривые рис. 2.1 обычно применяют для выбора охлаждения больших элементов - крупногабаритных ламп, магнитов, дросселей и т. П. Нижние кривые используют для выбора системы охлаждения блоков, стоек и т. П., выполняемых на дискретных микроминиатюрных элементах.

Если показатели РЭА попадают в заштрихованную область (возможно применение двух и трех способов охлаждения), то задача выбора способа охлаждения осложняется и требуются более детальные расчеты.

Приведем дополнительные данные, позволяющие учесть давление воздуха; в формуле (12.2) последнее учитывается коэффициентом kp, который был найден на основании расчетов и экспериментов. С уменьшением давления воздуха температура элементов РЭА возрастает; обозначим давление воздуха снаружи блока р1 а внутри - р2 для герметичного блока значение kp приведено в приложении (см. Табл. А.11). Коэффициент kp учитывает ухудшение охлаждения РЭА при пониженном давлении только в условиях свободной конвекции воздуха.

Заметим, что выбор системы охлаждения не сводится только к определению области охлаждения, необходимо также учитывать техническую возможность осуществления данного способа охлаждения РЭА, т. Е. Массу, объем, потребляемую мощность. Как показывает опыт, при рациональном проектировании можно обеспечить заданный тепловой режим бортовых РЭА при удельном расходе воздуха не выше 180-250 кг/(ч*квт).

Для стационарных РЭА, где менее жесткие ограничения по габаритам, массе, энергопотреблению расход воздуха может быть увеличен до 250-350 кг/(ч-квт). Для РЭА, охлаждаемых с помощью воздуха, тепловой режим изучен наиболее полно. В этих случаях можно не только рекомендовать ту или иную систему воздушного охлаждения, но и оценить вероятность, с которой выбранная система охлаждения позволит обеспечить заданный тепловой режим.


Теплообменники РЭС.

Теплообменным аппаратом называется устройство, в котором осуществляется процесс передачи теплоты от одного теплоносителя к другому. Такие аппараты многочисленны и по своему технологическому назначению и конструктивному оформлению весьма разнообразны. По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные.

Рекуперативными называются такие аппараты, в которых теплота от горячего теплоносителя к холодному передается через разделяющую их стенку. Примером таких аппаратов являются парогенераторы, подогреватели, конденсаторы и т. п.

Регенеративными называются такие аппараты, в которых одна и та же поверхность нагрева омывается то горячим, то холодным теплоносителем. При протекании горячей жидкости теплота воспринимается стенками аппарата и в них аккумулируется, при протекании холодной жидкости эта аккумулированная теплота ею воспринимается. Примером таких аппаратов являются регенераторы мартеновских и стеклоплавильных печей, воздухоподогреватели доменных печей и др.

В рекуперативных и регенеративных аппаратах процесс передачи теплоты неизбежно связан с поверхностью твердого тела. Поэтому такие аппараты называются также поверхностными.

В смесительных аппаратах процесс теплопередачи происходит путем непосредственного соприкосновения и смешения горячего и холодного теплоносителей. В этом случае теплопередача протекает одновременно с материальным обменом. Примером таких теплообменников являются башенные охладители (градирни), скрубберы и др.Специальные названия теплообменных аппаратов обычно определяются их назначением, например, парогенераторы, печи, водоподогреватели, испарители, перегреватели, конденсаторы, деаэраторы и т. д. Однако несмотря на большое разнообразие теплообменных аппаратов по виду, устройству, принципу действия и рабочим телам, назначение их в конце концов одно и то же, это - передача теплоты от одной, горячей, жидкости к другой, холодной. Поэтому и основные положения теплового расчета для них остаются общими.

Теплообменники отличаются характеристиками распределения температур по длине канала:

где T 1 ’ и T 2 ’ – температуры на входе теплообменника; T 1 "" и T 2 "" – на выходе.

Все теплообменники классифицируются на две группы, исходя из условий теплообмена. Передача тепла от горячего теплоносителя к холодному может идти либо через твердую стенку, либо через фазовую границу раздела. Через твердую стенку – рекуперативный теплообменник, через фазовую границу – градирня.

В справочниках ОСТ приведены характеристики теплообменников, выпускаемых промышленностью для РЭС.

Основная характеристика теплообменников – удельная площадь теплообменной поверхности:

; S уд ≈ 4500 и более.

Особенности работы теплообменных аппаратов:

1. Режим движения теплоносителя. В теплоносителе должен быть реализован турбулентный режим. Газ – V ≈ 100 ÷ 150 м/c; жидкость – V ≈ 2,5 ÷ 3 м/c. Режимы, которые реализуются в теплообменнике, должны быть выбраны оптимальным образом.

2. Тепловое проектирование теплообменников сводится к выполнению конструкторского и проверочного расчетов.

а) При выполнении конструкторского расчета осуществля­ется проектирование аппарата, цель расчета состоит в определении рабочей площади поверхности теплообменника, если заданы массовые расходы горячего и холодного теплоносителя, их температуры на входе и выходе, а также их удельные теплоемкости.

б) Проверочный расчет осуществляют для теплообменника с известной площадью поверхности (например, для сконструированного теплообменника). Цель расчета - определить значения температур теплоносителя на выходе из теплообменника и потока Ф теплоты, передаваемого от горячего теплоносителя к холодному, то есть установить рабочий режим аппарата.